| ~ (o]
ST 11:02% | 2319
)
@
navgaon | VOLUME 01/01/2018 Osaka, Japan
///:’_\\\\
J3 "4 I i< O | O
7 [N .
Nusic Windows
\\' , / 4 \)\ remparature 24°C :
\\\ /"’ o .
—— { "/ \, [:] %
A < 10%
Viessag RADIO rux —_— Power Air Con,
V-Redio 1055 MI 2 a
P) Yorld Neas 934 MFz
NI TokStep AM 95.0 M2 r ' Low Ii (-~
Command - Coats
AN (EER T §
(J\'-S Sot by ‘D Nam [J Defog |i l
C‘V\(}" ‘D Frequency N ——a” F Recirculate |D ||||||l||
Satrgs @ Favoun tes \\\ // Statistics

Formal Verification to Ensuring the

Felipe R. Monteiro
Memory Safety of C++ Programs

Federal University of Amazonas
Institute of Computing
Postgraduate Programme in Informatics

-ormal Verification to

[

suring

the Memory Safety of C++

Felipe R. Monteiro
M.Sc. Candidate

Dr. Lucas C. Cordeiro

Supervisor

January 17, 2020
Manaus, Amazonas, Brazil

Programs

Master of Science in Informatics

Problem & Motivation

Security is one of the most
pressing issues of the 21st century

Consumer electronic products must be
as robust and bug-free as possible,
given that even medium product-return
rates tend to be unacceptable

Not only

safety-critical
Systems

Consumer electronic products must be
as robust and bug-free as possible,
given that even medium product-return
rates tend to be unacceptable

- “Engineers reported the static analyser Infer was key to build a
concurrent version of Facebook app to the Android platform.”
Peter O’Hearn, FLoC, 2018.

100%
90%
8%
70%
60%
S0%

% cf CVEs

40%
30%

-~
[

10%
0%

2006 2007 20C8 2009 2010 201 <012 2013 2014 2008 2016 2017 <C18
Paich Year

B Memory safety B Nct memory sefety

“The majority of vulnerabilities are caused by developers inadvertently
inserting memory corruption bugs into their C and C++ code. As
Microsoft increases its code base and uses more Open Source Software
in its code, this problem isn’t getting better, it’s getting worse.”
Matt Miller, Microsoft Security Response Centre, 2019.

dMaZon

web services

“Formal automated reasoning is one of
the investments that AWS is making in
order to facilitate continued simultaneous

growth in both functionality and security.”
Byron Cook, FLoC, 2018.

“There has been a tremendous amount of
valuable research in formal methods, but

rarely have formal reasoning techniques £ book h
been deployed as part of the development TACEDOOK TESEArC

process of large industrial codebases.”
Peter O’Hearn, FLoC, 2018.

The research question is...

How to apply formal verification to
ensuring memory safety of software
written in the C++ programming language?

Main goal is to...

Apply model checking techniques to ensuring
memory safety of C++ programs

10

Main goal is to...

Apply model checking techniques to ensuring
memory safety of C++ programs

() Provide a logical formalization of essential features that the C++ programming language
offers, such as templates, sequential and associative containers, inheritance, polymorphism, and
exception handling.

11

Main goal is to...

Apply model checking techniques to ensuring
memory safety of C++ programs

(i) Provide a set of abstractions to the Standard C++ Libraries (SCL) that reflects their
semantics, in order to enable the verification of functional properties related to the use of
these libraries.

12

Main goal is to...

Apply model checking techniques to ensuring
memory safety of C++ programs

(i) Extend an existing verifier to handle the verification of C++ programs based on (i) and (ii)
and evaluate its efficiency and effectiveness in comparison to similar state-of-the-art approaches.

13

Contributions

V.

VI.

the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

the formalization of the ESBMC's engine to handle inheritance & polymorphism;
the formalization of all throw & catch exception rules supported by ESBMC;

the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

14

Contributions

the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

15

Contributions

V.

VI.

the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

the formalization of the ESBMC's engine to handle inheritance & polymorphism;
the formalization of all throw & catch exception rules supported by ESBMC;

the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

16

Contributions

V.

VI.

the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

the formalization of the ESBMC's engine to handle inheritance & polymorphism;
the formalization of all throw & catch exception rules supported by ESBMC;

the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

17

Contributions

V.

VI.

the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

the formalization of the ESBMC's engine to handle inheritance & polymorphism;
the formalization of all throw & catch exception rules supported by ESBMC;

the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

18

Contributions

V.

VI.

the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

the formalization of the ESBMC's engine to handle inheritance & polymorphism;
the formalization of all throw & catch exception rules supported by ESBMC;

the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

19

Contributions

V.

Vi.

the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

the formalization of the ESBMC's engine to handle inheritance & polymorphism;
the formalization of all throw & catch exception rules supported by ESBMC;

the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

20

Background Theory

Satisfiability Module Theories,
Bounded Model Checking
& ESBMC Architecture

Satisfiability Modulo Theories

Symbolic logic formula
not x or (y and z)

means

Either x is false or y and z are true (or both)

22

Satisfiability Modulo Theories

Symbolic logic formula
not x or (y and z)

means

Either x is false or y and z are true (or both)

Boolean Satisfiability (SAT)
not x or (y and z)

x = false, y = true, z = true

IS satisfiable

23

Satisfiability Modulo Theories

Symbolic logic formula
not x or (y and z)

means

Either x is false or y and z are true (or both)

Boolean Satisfiability (SAT)
not x or (y and z)

x = false, y = true, z = true

IS satisfiable

not x and x

IS unsatisfiable

24

Satisfiability Modulo Theories

As a generalisation of SAT, and the Boolean variables are replaced
by other first-order theories:

Equality 5
Arithmetic x*=4=0
Arrays X=2
Fixed-width bit-vectors

| Is satisfiable
Inductive data types

25

Satisfiability Modulo Theories

- As a generalisation of SAT, and the Boolean variables are replaced
by other first-order theories:

- Equality 2

- Arithmetic ¥ —4=0
- Arrays X =2

- Fixed-width bit-vectors s satisfiable

- Inductive data types

Where the key here is to take the problem
and turn it into an SMT formula

26

Bounded Model Checking

Basic Idea: given a transition system M, check negation of a given
property ¢ up to given depth k

S Property
o —ae y TP v TP v TP v TP |V Ty
- K "Z'ff.'f.??’ Transition - ® .0 ,® ... &— 0
o ~ System N
MO M1 M2 Mk-1 Mk <— Bound
_ Counterexample trace -

Translated into a VC such that: ¢ is satisfiable iff ¢ has
counterexample of max. depth k

BMC has been applied successfully to verify (embedded) software
since early 2000’s.

27

=SBMC Architecture

ESBMC is an open source, permissively licensed, context-bounded model
checker based on satisfiability modulo theories for the verification of single- and
multi-threaded C/C++ programs.

[t does not require the user annotates the programs with pre- or postconditions,
but allows the user to state additional properties using assert-statements, that
are then checked as well.

It converts the verification conditions using different background theories and
passes them directly to an SMT solver.

ESBMC is a joint project with

Federal University of Amazonas ESBMC

University of Bristol

University of Manchester An Efficient SMT-based Bounded Model
University of Stellenbosch Checker.

University of Southampton

28

S

BMC Architecture

Operational
Model

C++
Source

ANSI-C
Source

Verification Successful

: Front-end |
| |
|
GOTO IR Type Checked | C++ C++IR C++ Parse ‘: Scan
Converter | i| Type Check Tree ‘:
| |
|
' |
|
I
|
I
I
I
' |
! AST ANSI-C IR clang) Scan
.| Converter)
GOTO | ,
ProgbGkm === - ————————— |
(CFG)
» Convert Constraints
Logical Constraints
Symbolic | SSA Form Logical Logical Formula SMT
Execution Context g Solver

A

\ 4

Logical Properties

v

Convert Properties

v

Property
holds up
to bound k

Property
violation

Counterexample

29

BMC Architecture

I -
I Front-end : Operational
: | Model
GOTO IR Type Checked | C++) C++IR C++ Parse :: Scan
Converter || Type Check Tree : [] Program under
I 0rx :
| | G+ verification
| | Source
| ' |
: | |
| AST | ANSICIR ang 1 scan ANSI-C
| Converter | N Source
GOTO : |
°Progem = - |
(CFG)
» Convert Constraints Verification Successful
1 . . Property
Logical Constraints holds up
y y to bound k
Symbolic SSA Form Logical Logical Formula SMT R
Execution Context g Solver

A

Property

Logical Properties violation

\ 4

v

Convert Properties Counterexample

BMC Architecture

I -
I Front-end : Operational
: | Model
GOTO | IRType Checked I C++ ~ C++IR Ci+ Parsk 5
“ , <
Converter : Type Check Tr?e ESBMC uses Clang to
| generates a reliable AST
I I]
I
| |
| I
| AST | ANSICIR ang 1 scan ANSI-C
| Converter | N Source
GOTO : |
Progem = - - |
(CFG)
» Convert Constraints Verification Successful
1 . . Property
Logical Constraints holds up
y y to bound k
Symbolic SSA Form Logical Logical Formula SMT R
Execution Context g Solver

A

Property

Logical Properties violation

\ 4

v

Convert Properties Counterexample

BMC Architecture

This is an additional
extension for the ESBMC

I -
I Front-end : Operational
: | Model
GOTO IR Type Checked | C++ ~ C++IR C++ Parse :: Scan
Converter | i| Type Check | Tree :
: I C++
I : Source
| |
I
I
I
' |
! AST) ANSI-C IR clang) Scan ANSI-C
| Converter | N Source
GOTO : |
°Progem = - |
(CFG)
» Convert Constraints Verification Successful
1 . . Property
Logical Constraints holds up
y y to bound k
Symbolic SSA Form Logical Logical Formula SMT R
Execution Context g Solver
1 Property
Logical Properties violation
» Convert Properties Counterexample

32

BMC Architecture

The parser for C++ is
heavily based on the

_________________ -4 GNU C++ Compiler
| Front-end | .
I I Operational
: | Model
GOTO IR Type Checked | C++ ~ C++IR C++ Parse ‘: Scan
Converter | i| Type Check | Tree ‘:
: I C++
I : Source
| |
I
I
I
| |
! AST) ANSI-C IR clang) Scan ANSI-C
| Converter | N Source
GOTO : |
Progem == ——————— =]
(CFG)
» Convert Constraints Verification Successful
1 , , Property
Logical Constraints holds up
y y to bound k
Symbolic SSA Form Logical Logical Formula SMT R
Execution Context g Solver

A

Property

Logical Properties violation

\ 4

v

Convert Properties Counterexample

BMC Architecture

A simplified representation that consists only
of assignments, conditional and unconditional
branches, assumes, and assertions

_______ |
| .
I Front-end : Operational
: | Model
GOTO IR Type Checked | C++ C++IR C++ Parse ‘: Scan
Converter | i| Type Check Tree ‘:
: I C++
I : Source
| |
|
|
|
' |
! AST ANSI-C IR clang) Scan ANSI-C
| Converter N Source
GOTO : |
Progem == ——————— =]
(CFG)
» Convert Constraints Verification Successful
1 , , Property
Logical Constraints holds up
A A to bound k
Symbolic SSA Form Logical Logical Formula SMT R
Execution Context - Solver

A

\ 4

Logical Properties

v

Convert Properties

Property
violation

Counterexample

34

S

GOTO
Converter

BMC Architecture

GOTO

IR Type Checked

ESBMC symbolically executes the GOTO
program and derives all the safety properties

\ 4

Symbolic
Execution

SSA Form

Logical Constraints

\ 4

Logical Logical Formula

o
»

Context

A

Logical Properties

\ 4

v

Convert Properties

SMT
Solver

_________________________ |
Front-end : Operational
I Model
C++ ___C+IR C++ Parse || Scan
Type Check | Tree ‘:
I C++
: Source
I
I
I
AST | ANSICIR 1 scan ANSI-C
Converter | ST ‘: Source

Verification Successful

Property
holds up
to bound k

v

Property
violation

Counterexample

35

BMC Architecture

I -
I Front-end : Operational
: | Model
GOTO IR Type Checked | C++ ~ C++IR C++ Parse ‘: Scan
Converter | i| Type Check | Tree ‘:
: : C++
I I Source
' |
' |
' |
I
| AST ANSI-C IR | Scan ANSI-C
1 converter |[* clang -
GOTO |
Program e SN | ESBMC generatesthe formula [
(CFG) C. P :
» Convert Constraints /\ L
|
‘ , : Property
Logical CoOnstraints holds up
v y to bound k
Symbolic SSA Form Logical Logical Formula SMT R
Execution Context g Solver

A

Property

Logical Properties violation

\ 4

v

Convert Properties Counterexample

S

BMC Architecture

: Front-end
I
I
GOTO IR Type Checked | C++ C++ IR
Converter | i| Type Check
I
I
I
I
I
I
I
! AST ANSI-C IR
GOTO || Converter
Program e = —
(CFG)
» Convert Constraints
Logical Constraints
Symbolic SSA Form Logical Logical Formula
Execution Context

C++ Parse
Tree

Operational

Model

C++

Source

ESBMC’s back-end supports 5 solvers:
| Boolector, Z3, MathSAT, CVC4, and Yices

> SMT

A

\ 4

Logical Properties

v

Convert Properties

Solver

Verification Successful

Property
holds up
to bound k

v

Property
violation

Counterexample

37

CPU Time (in seconds)

—S

1200

1000

800

600

400

200

BMC Architecture

T T
Boolector v2.0.1 +

73 v4.0 X
Yices 2 v4.1

Symbolic orm
Execution

&+
*#H'H'
F g
% +
gg(w
L | f
X% g g ’
W e
2
M +
g g ! | | I I I
0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Number of Verification Conditions Solved

________ |
: Operational
I Model
I

C++ Parse | Scan
Tree ‘:

| C++
: Source
I
I
I
|

ESBMC’s back-end supports 5 solvers:
_T|1 Boolector, Z3, MathSAT, CVC4, and Yices

Verification Successful

Property
holds up
to bound k

SMT

A

Logical Properties

\ 4

v

Convert Properties

Logical ogical Formula
Context g

v

Solver

Property
violation

Counterexample

38

S

BMC Architecture

————————————————————————— I
I -
I Front-end : Operational
: | Model
GOTO IR Type Checked | C++ C++IR C++ Parse ‘: Scan
Converter | i| Type Check Tree ‘:
: I C++
I : Source
| |
I
| |
| |
! AST ANSI-C IR clang) Scan ANSI-C
| Converter N Source
GOTO : |
Progem == ——————— =]
(CFG)
» Convert Constraints Verification Successful
1 | t Property
Logical Constraints
- . - o If the formula is SAT, the
Symbolic orm Logical ogical Formula SMT i
Execution Context g Solver gregliein’ contains a bug

A

\ 4

Logical Properties

v

Convert Properties

Property
violation

39

BMC Architecture

| _
I Front-end : Operational
: | Model
GOTO IR Type Checked | C++ ~ C++IR C++ Parse ‘: Scan
Converter | i| Type Check | Tree ‘:
: I C++
I : Source
| |
|
|
|
! |
! AST) ANSI-C IR clang) Scan ANSI-C
| Converter | N Source
GOTO : |
Progem == ——————— =]
(CFG)
» Convert Constraints Verification Successful
1 , , Property
Logical Constraints holds up
A 4 y to bound k
Symbolic SSAForm Logical Logical Formula - SMT R Otherwise
Execution Context g Solver

A

Property

Logical Properties violation

\ 4

v

Convert Properties Counterexample

Related \Work

....................

What is out there? R P PRESATR I ERTES S IR S

Related Work

Conversion
Related work lo olther C+t+ Programming Languagc
language
Standacd Inhcritance &
Templates Template lk' - l. . Exception Handling
Libraries Polymorphism
Merz et al. [39] LLVM Yes Yes Yes No
Blanc et al. [16] No Yes Yes No No
Prabhu et al. |74] ANSI-C Yes Not mentioned Yes Yes
Clarke et al. [24] No Yes No No Na
Baranova et al. 6] LLVM Yes Yes Yes Yes
ESBMC ¢2.0 No Yes Yes Yes Yes

When it comes to the verification of C++ programs, most of the

model checkers available focus on specific features

42

Related Work

LLBMC I_\

Conversion
Related work lo olther C+t+ Programming Languagc
language
Standacd Inhcritance &
Templates Template lk' - l. . Exception Handling
Libraries Polymorphism
Merz et al. [39] LLVM Yes Yes Yes No
Blanc et al. [16] No Yes Yes No No
Prabhu et al. |74] ANSI-C Yes Not mentioned Yes Yes
Clarke et al. [24] No Yes No No Na
Baranova et al. 6] LLVM Yes Yes Yes Yes
ESBMC ¢2.0 No Yes Yes Yes Yes

When it comes to the verification of C++ programs, most of the

model checkers available focus on specific features

43

Related Work

SATABS T

Conversion
Related work lo olther C+t+ Programming Languagc
language
Standacd Inhcritance &
Templates Template lk' - l. . Exception Handling
Libraries Polymorphism
Merz et al. [39] LLVM Yes Yes Yes No
Blanc et al. [16] No Yes Yes No No
Prabhu et al. |74] ANSI-C Yes Not mentioned Yes Yes
Clarke et al. [24] No Yes No No Na
Baranova et al. 6] LLVM Yes Yes Yes Yes
ESBMC ¢2.0 No Yes Yes Yes Yes

When it comes to the verification of C++ programs, most of the

model checkers available focus on specific features

44

Related Work

s

Conversion
Related work lo olther C+t+ Programming Languagc
language
Standacd Inhcritance &
Templates Template lk' - l. . Exception Handling
Libraries Polymorphism
Merz et al. [39] LLVM Yes Yes Yes No
Blanc et al. [16] No Yes Yes No No
Prabhu et al. |74] ANSI-C Yes Not mentioned Yes Yes
Clarke et al. [24] No Yes No No Na
Baranova et al. 6] LLVM Yes Yes Yes Yes
ESBMC ¢2.0 No Yes Yes Yes Yes

When it comes to the verification of C++ programs, most of the

model checkers available focus on specific features

45

Related Work

CBMC

Conversion
Related work lo olther C+t+ Programming Languagc
language
Standacd Inhcritance &
Templates Template lk' - l. . Exception Handling
Libraries Polymorphism
Merz et al. [39] LLVM Yes Yes Yes No
H Blanc et al. [16] No Yes Yes No No
Prabhu et al. |74] ANSI-C Yes Not mentioned Yes Yes
Clarke et al. [24] No Yes No No Na
Baranova et al. 6] LLVM Yes Yes Yes Yes
ESBMC ¢2.0 No Yes Yes Yes Yes

When it comes to the verification of C++ programs, most of the

model checkers available focus on specific features

46

Related Work

DIVINE

Conversion
Related work lo olther C+t+ Programming Languagc
language
Standacd Inhcritance &
Templates Template lk' - l. . Exception Handling
Libraries Polymorphism
Merz et al. [39] LLVM Yes Yes Yes No
Blanc et al. [16] No Yes Yes No No
Prabhu et al. |74] ANSI-C Yes Not mentioned Yes Yes
Clarke et al. [24] No Yes No No Na
Baranova et al. 6] LLVM Yes Yes Yes Yes
ESBMC ¢2.0 No Yes Yes Yes Yes

When it comes to the verification of C++ programs, most of the

model checkers available focus on specific features

47

Related Work

Conversion
Related work Lo other C++ Programming Languagc
language
Standard Inhcritance &
Templates Template] . Exception Handling

Libraries Polymorphism
Merz et al. [39| LLVM Yes Yes Yes No
Blanc et al. [16] No Yes Yes No No
Prabhu et al. |74] ANSI-C Yes Not mentioned Yes Yes
Clarke et al. [24] No Yes No No Nao
Baranova ot al :(i! LIVM Yes | Yos Yes Yes
ESBMC 2.0 No Yes Yes Yes Yes

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

Related Work

Conversion
Related work Lo other C++ Programming Languagc
language
Standard Inheritance &
Templates Template “f 'd. w - | Exception Handling

Libraries Polymorphism
Merz et al. [39] LLVM Yes Yes Yes No
Blanc et al. [16] No Yes Yes No No
Prabhu et al. |74] ANSI-C Yes Not mentioned Yes Yes
Clarke et al. [24] No Yes No No No
Baranova et al. :(i] LILVM Yeos Yes Yes Yes
ESBMC 2.0 No Yes Yes Yes Yes

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technigue to verify C++ programs.

- Baranova et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

49

Approach and Uniqueness

SMT-based Bounded Model
Checking of C++ Programs

SMT-based Bounded Model Checking C++ of Programs

Encoding essential features of C++ into SMT:
() Primary template and explicit-template & partial-template specialization*

(i) Standard Template Libraries
Sequential and Associative Containers

(iii) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.) 51

SMT-based Bounded Model Checking C++ of Programs

Encoding essential features of C++ into SMT:
() Primary template and explicit-template & partial-template specialization*

(i) Standard Template Libraries
Sequential and Associative Containers

(ili) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.) 52

Templates

» Templates are used to define functions or classes of generic data type,
which can be later instantiated with a specific data type

Cowmpiler mnlenlly generales
and adds below code

template <typename T> D J%M STATIARE Ko ANED)
_1: myMax(T x, T y) - return (x > y)? x: y;
- -L 2 = ¥
[return (x > y)7 %: y; / :

} 5%

int main() 7
cout << myMax<int>(3, 7) << endl;

cout << myMax<char>(i) << endl;~" -2
return 0;

Campiler internally generares
and adds below code.

char myMax(char x, char y)
{

return (x > y)? x: y;

}

Source: https://www.geeksforgeeks.org/templates-cpp/

53
- —

Templates

 Templates are used to define functions or classes of generic data type,
which can be later instantiated with a specific data type

Reusability

54

Templates

 Templates are used to define functions or classes of generic data type,
which can be later instantiated with a specific data type

Reusability

J/ Template class definition.

.| * As described by Gadelha et al., in
ESBMC templates are only used until the
tenplate class Classl <inT> : type-CheCklhg phase

J/ Template class specialirzation

tenplate <> class Class]

- At the end of the type-checking phase,
tenplate <zypenzme 1> ciass Classi K% € /0 L. o) all templates are discarded.

4

95

Templates

Aaron R. Bradley
Zohar Manna

The Calculus
of Computation

62 Springer

56

Templates

D Y =

-
-

s | Se | sp

a|A

name | Z.name | G.name

k|Z.k|G.k|class | func

o7

Templates

D Y =

) INnstantiations
.

-
S| Sel sp

a|A

name | Z.name | G.name

k|Z.k|G.k|class | func

58

Templates

x2S N O

) istantiaons |
-
S| Selsp

a|A

name | Z.name | G.name

k|Z.k|G.k|class|func

59

Templates

x2S N O

) istantiaons |
o tempates
s[5, |5, | Spodelzations |

a|A

name | Z.name | G.name

k|Z.k|G.k|class|func

60

Templates

x2S N O

) istantiaons |
o tempates
o |5, |5,) Spocelzations |

a|A

name | Z.name | G.name

k|Z.k|G.k|class | func

61

Templates

x2S N O

) istantiaons |
o tempates
o |5, |5,) Spocelzations |

a|A

name | Z.name | G.name

k|Z.k|G.k|class | func

62

Templates

x2S N O

) istantiaons |
o tempates
o |5, |5,) Spocelzations |

a|A

name | Z.name | G.name

k|Z.k|G.k|class | func

63

Templates

def T:
M7, T) < {

.name — 7.name A 7.k = 7.k

otherwise

Vs € Sr - (su, Ar) = (5, A7)

otherwise

64

Templates

.name — 7.name A 7.k = 7.k

otherwise

Vs € Sr - (su, Ar) = (5, A7)

otherwise

65

Templates

T, m.name = T.name A 7.k = 7.k

1, otherwise

AN, T) =
(m,7) &, otherwise

def{ SM Vs € ST ' (SM)A'R) ~ (87Aﬂ')

66

Templates

Tq) = ite(M(m,T1), Tr = T1.

,C(Tl‘,Tl,

’étC(JM (7T, 7—2), Te — T2,

ite(M(m, 7)), Te = Tqy Tn = D) .. .)
ANTn # &

ANs=\mS;)

Nite(s = D, Try)

67

Templates

—
S © @O 4O O = KW

R
o

13
14
15
16
18
19

20
21
22
23
24
25
26

#include<cassert >
using namespace std;

// template creation
template <typename T>

bool qCompare(const T a, const T b) {

return (a2 > b) ? true : false;

}

template <typename T>

bool qCompare(T a, T b) {
return (a > b) 7 true : false;

h

// template specialization

template<>

bool qCompare(float a, float b) {
return (b > a) 7 true : false;

1

int main() {
// template imstantialion
assert ((qComparc(1.5f, 2.5f)));
asserl ((qCompare<int >(1, 2) =
rcturn 0:

false

A

|
/

3\

/

?

68

Templates

- W

—
S © @ 43 & O

R
o

13
14
15
16
18
19

20
21

22
23
24
25
26

#include<cassert >
using namespace std;

// template creation
template <typename T>
bool qCompare(const T a,

return (a2 > b) ? true
}

template <typename T>

bool qCompare(T a, T b) {
return (a > b) 7 true

h

const T b) {

false ;

false ;

// template specialization

template<>

bool qCompare(float a, float b) {

return (b > a) 7 true

}

int main() {

false

// template instantialion

assert ((qComparc(1.5f,

asserl ((qCompare<int > (1,

rceturn 0;

2.51)));

2) ——

Template creation

alee) -
false))

/

69

Templates

N
@ W

R L

e e
(o> B BV U B R = e v S B s B

WV N =
= C © ™

N N
(=

#include<cassert >
using namespace std;

S/ template creation

template <typename T>

bool gqCompare(const T a, const T b)
return (a2 > b) ? true : false;

}

template <typename T>

bool qCompare(T a, T b) {
return (a > b) 7 true : false;

}

// template specialization

template<>
bool qCompare(float a, float b) {
return (b > a) 7 true : false:

}

int main() {

/'/' temmplate tmstantialion

assert ((qComparc(1.5f, 2.5f)));

asserl ((qCompare<int >(1, 2) == false

recturn 0

|
/

Template instantiation float

vd

)
/

?

Template instantiation int

70

Templates

qCompare ‘

— arguments]

8

- e e e e e -

) arguments’
(float r ;)
(floatr)

" _Ieturn |
(bool r \)

Template definition
using generic types

71

Templates

qCompare ‘

— arguments]

—— . —— — e

- e e e e e -

S o o e e e e e e

N\

(floatr)

7
N

(floatr)

s

e ———

Template definition

using generic types

Template instantiation float

. ——— —— — — —

—>[remurn

e —— — —— — —

Template instantiationint

[gCompare]

—»[arguments]

P e e e o — — —

P e e e e - o —

——[return |

P e e e e e e -

72

Templates

/__‘ SSA Form

U s W

al = 1.5
bl = 2.5
return_qcomparel
a2 = 1
b2 = 2
return_.qcompare?2

f
f

(bl > al)? TRUE : FALSE

(a2 > b2)? TRUE : FALSE

73

Templates

a1 =15f Aby =2.5f
A return_qgcompare; = ite (by > a1,1,0)

Aas=1ANby =2

A return_gcomparez = ite (a2 > b2,1,0)

D . return_qcompare, = T

A return_qgcompares = L

SMT-based Bounded Model Checking C++ of Programs

Encoding essential features of C++ into SMT:
() Primary template and explicit-template & partial-template specialization™

(i) Standard Template Libraries
Sequential and Associative Containers

(ili) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.) 75

Suilding Operational Models

We base the development process of operational models In the

documentation of the Standard C++ Library

- the operational model is an abstract representation, which is used to
identify elements and verify specific properties related to C++ libraries

<map> <map> abstraction
<vector> Extract/ldentify <vector> abstraction
vector .
structure/properties D :
SCL Documentation > SCL Operational Mode
template < class T, ‘Eemplate < class T > class vector
class Alloc = allocator<T>
> class vector "t .
. void at (size_type n) {
t Add'f‘g - » _ ESBMC_assert(n>= 0,
foe assertions "Index must be equal or
bool empty () const; greater than zero.");
~ void at (size_type n); L }

Operational Models for Containers

"The Containers library is a generic collection of class
templates and algorithms that allow programmers to easily

Implement common data structures”
cppreference.com, 2018.

- Sequential containers are built into
a structure to store elements of a
certain type V, in a certain sequential
order.

- Note that all methods, from those
libraries, can be expressed as
simplified variations of 3 main P
operations: £
- Insertion C.insert (I, V, N))pl)pz)p3)p4))pn)
- deletion C.erase (1) Memory
- search (.search (V)

/
_ - Iterator

——

Pointer

77

Operational Models for Containers

"The Containers library iS a generic

collection of class

templates and algorithms that allow programmers to easily

Implement common data structures”

- Associative containers connects
each key, of a certain type K, to a
value, of a certain type V, where
associated keys are stored in order.

cppreference.com, 2018.

- Note that all methods, from those
libraries, can be expressed as

simplified variations of three main

operations:

- Insertion C.insert (I, V, N)
- deletion C.erase (1)
- search (.search (K)

/8

SMT-based Bounded Model Checking C++ of Programs

Encoding essential features of C++ into SMT:
() Primary template and explicit-template & partial-template specialization™

(i) Standard Template Libraries
Sequential and Associative Containers

(iii) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.) 79

Inheritance & Polymorphism

- C++ features as inheritance and polymorphism make static
analysis difficult to implement.
- multiple inheritance in C++ includes repeated and shared

iInheritance of base classes, object identity distinction, dynamic
dispatch that raise interesting challenges for model checking

- ESBMC replicates the methods and
attributes of the base classes to the
iNherited class to have direct access

to them

- replicated inheritance

- shared inheritance

Inheritance &

Jet

Polymorphism

Vehicle

+ number_of_wheels()

Car

+ propulse()

Motorcycle

+ number_of_wheels()

JetCar

+ number_of_wheels()
+ propulse()

+ number_of_wheels()

81

class Vehicle
[
public:

Vehicle() {1}

virtual int number_of_wheels() = O;

Inheritance &

}s

class Motorcycle : public Vehicle

{
public:

Motorcycle () : Vehicle() [}:

virtual int number_of_wheels() { return

O A W e W e e

o

— —
-

—
‘-

}:

> =

class Car : public Vehicle

(

public:
Car() : Vehicle() {};
virtual int number_of_wheels() { return

- e .
o o0 < >

}:

i

int main()

(

-

LIS S S S
o

-~

bool foo = nondet();

o e

Vchicles v,
if(fco)

v = new Motorcycle();
else

v = new Car():

e R R S O R LS S B S
e — © O 290

bool res;
if (foo)

res = (v—>number_of_wheels() == 2);
else

res = (v->number_of_wheels() == 4);
assert(res);
return 0;

e e e e e
> -~ AN == e

e
o
—

Inheritance &

O A W e W e e

=

L . I
= - - - ™ T P B

—

R I I L S L L= I S S L S S S S S
° e IR SR R P © B B = - < S W W e

class Vehicle

[
public:
Vehicle() {}:
virtual int number_of_wheels() = O;
}s
class Motorcycle : public Vehicle
l

public:
Motorcycle() : Vehicle() [};

virtual int number_of_wheels() { return
}:
class Car : public Vehicle
{
public:
Car() : Vehicle() [}:
virtual int number_of_wheels() { return
}:
int main()
[
G}ol foo = nondet(); ﬂ
Vchicles v,
ififoco)
v = new Motorcycle();
else
kv = new Car(); J
bool res;
if (foo)
res = (v—>number_of_wheels() == 2):
else
res = (v-=>number_of_wheels() == 4);
assert(res):
return 0;

83

N ® ~N & nh s W N -

9
=

T > T T T I S N N S N
_— 0 e W N DN N s W N -

32

main() (c::main):
FUNCTION CALL: return value nondet$l=nondet()
bool foo;
foo = return_value _nondet$1 ;

class Vehicle * v,

IF !'foo THEN GOTO 1

new_valuel = new class Motorcvcle;

new_valuel —>vtable —>number_of_wheels
&Vehicle ::number_of _wheel ():

new_valuel >vtable >number_of_wheels

&Motorcycle :: number_of_wheel ()
v = (class Vehicle x)new_value;
GOTO 2

l1: new_value2 = new class Car;
new_value2 —>vtable —>number_of_wheels =
&Vehicle ::number_of_wheel ();
new_value2 —>vtable —>number_of_wheels
&Car :: number_of_wheel ();
v = (class Vehicle x)new_value;

bool res:
2: IF !'Too THEN GOTO 3
FUNCTION_CALL: return_value_number_of_wheels
*v—>vtable —>number_of_wheel ()
res = wheels == 2
GOTO 4
3: FUNCTION_CALL: return_value_number_of_wheels
xv—>vtable —>number_of_wheel ()
res = wheels == 4
4: ASERT res
RETURN: 0

END_FUNCTION

84

Lo T A | R e o

o

o L R S B N o B Y R " I OV

return_value_nondetl == nondet_symbol(symex:

fool == return_value_nondet]
ncw_valucll == ncw_valuclO
WITH [vtable = new_valuel0O. vtable
WITH [number_of_wheel =
&Motorcycle :: number_of_wheels ()]]
new_valuel?2 == new_valuell
WIITH | vtable = new_valuell . vtable
WITH [number_of_wheel =
&Motorcycle :: number_of_wheels ()]]
vl == new_valuel?2
new value2l == new value20
WITH [vtable = new_value20. vtable
WITH [number_of wheel =
&Motorcycle :: number_of_wheels ()]]
new_value22 == new_value2l
WITH [vtable = new value2l.vtable

WITH [number of wheel =
&Motorcycle :: number of wheels ()]]

v2 == new_valuel2
v3 == (fool ? vl : v2):
return_value_number_of_wheels] == 2
resl == (return_value_number_of_wheelsl
rcturn_valuec_number_of_wheels2 ==
res2 == (return_value_number_of_wheels2
res3 == (fool 7 resl : res2)

4)

:0)

85

Inheritance & Polymorphism

return_value_number_of_wheels) =2

A res) = (return_value_number_o f_wheels; = 2)
A return_value_number_of_wheels; = 4

A resy = (return_value_number_of_wheels) = 4)

N resy = ite(fool,resy,res))

PZ:[F€S3:1]

86

SMT-based Bounded Model Checking C++ of Programs

Encoding essential features of C++ into SMT:
() Primary template and explicit-template & partial-template specialization™

(i) Standard Template Libraries
Sequential and Associative Containers

(ili) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.) 87

Try & Catch Rules

* Exceptions are unexpected circumstances that arise during the
execution of a program, e.g., runtime errors.

- a try block, where a thrown exception can be directed to a catch
statement;

- a set of catch statements, where a thrown exception can be
handled;

- a throw statement that raises an
exception.

Try & Catch Rules

Rule Behavior Formnalization

r Catenes an exception if the tyvpe of wel3h - Mle. k) he, = h hey = havnt)
the thrown exosplion e is aqual Lo
the type of the cateh h.

rz | Catehes an exception i the tvpe of ite(zh . Me ih)),h,, =hh ,=Fk,.n)
the thrown execption ¢ 15 oqual to
the type of the catch kb ignoring
the qualifiers const, voiatile, and
reatriet.

ra | Catehes an exception if its type is te(dh- e=epAbh=he AMley e tyy = haiityry = hnvut)
a pomter of a given type x and the
type of the thrown exception is an
array of the same type .

ra | Catehes an cxcepuion if its type 15 | ife(zh e =cyg Ah = hyo A Mlcg hyg) hey = hyoy by =)
a ponter to fanction that retinns
a given type = and the tvpe of the
thrown exception 15 a bunction that
returns the same type z.

r= | Catches an exception if its type is ite(Jdi - Ule,n) bey = b bey = hpun)
an unambiguous base type for the
type of the thrown execption.

re. | Catehes an exception 1f the tvpe of e(Bh cmcoAhm o AlNCo Ko) by = by hey = hguni)
the thrown ex rplilm e van e cone
verced Lo the type of the catch i,
gither by qualification or standard
pointer canversion |50,

r7 | Catches an exception if its type is a ite(Ipr e —eaAh = hy by = hy. by = lnunr)
void pointer h, and the type of the
thrown cxeeption ¢ 15 o pointer of
any given type

rx | Catches any thrown exception if its te(Ve-dh- h=h _ he, =k hyy = ftnun)
type is ellipsis

ite(e = Enuli N2} # Cnuils

h:| = Tgl:(?_|,h|, emcs ’-u)
ro | IF tle throw expression doss not AL
throw anything, it should re-throw A b, =rale 1 he,),
the last thrown exception e— ;. it it Ry = Rocit)
'b e

rxists.

- W

W w

—Xperimental
—valuation

b
=
~=./
.s\

Evaluate accuracy & performance
of model checkers targeting C++

7

Objectives

Experiments aimed at answering two questions regarding
correctness and performance of ESBMC:

(EQ-1) How accurate is ESBMC when verifying the chosen C++03
programs”?

(EQ-II) How does ESBMC performance compare to other existing
model checkers?

91

Senchmarks

Our set of benchmarks contains 15613 C++ programs (89,147 LOC).

36% larger than our previous published evaluation;

The mentioned benchmarks are split into 5 categories:

Templates: formed by the cbmc, gcc-templates and templates benchmark suites
(94 benchmarks);

Standard Containers: formed by algorithm, deque, vector, list, queue,
priority_queue, stack, map, multimap, set and multiset test suites (631
benchmarks);

Inheritance & Polymorphism: formed by inheritance benchmark suite (51
benchmarks);

Exception: formed by the try_catch benchmark suite (81 benchmarks);
C++03: formed by cpp, string, and stream benchmark suites (656 benchmarks);

92

Setup

Compare ESBMC against LLBMC and DIVINE with respect to coverage and
precision in the verification process of C++03 programs

ESBMC v2.0
LLBMC v2013.1
DIVINE v4.0.22

All experiments were conducted 0s
17-4790 processor, 3.60GHz clock, with 16GB RAM memory
Ubuntu 14.04 64-bit OS
time limit of 900 seconds (i.e., CPU time)

memory limit of 14GG

93

=Xperimental Results

A comparison regarding the performance of LLBMC and ESBMC, which are SMT-based BMC
model checkers, and DIVINE, which employs explicit-state model checking, was carried out

- ESBMC presented a successful rate of 85% (in 7 hours) and LLBMC 63% (in 12 hours),
overcoming DIVINE that presented 42% (in 49 hours)

O,
100% 3.80%

8.51% 6.38% 10.14% 9.19%

(o)
15.68% 12.35%

90% 0
27.66% 8.51% 11.71% 8.87% 2L37% 5 49%
° . o

1.06% .60%
80% 17.60%

5.88% 30.86%

53.25%

70% 6.38%

60%

47.06%

50%

40%

30%

20%

10%

0%

ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE
Templates Standard Containers Inheritance & Polymorphism Exception Handling
M Correct ™ False Positives False Negatives Unknown

94

100%

3.80%

8.51% 6.38% 10.14% 9.19% 12.35%
15.68% o

90% . 21.57%

27.66% 8.51% o7t 8.87% 2:49%
809 e 1.06% 17.60%
(0]

0 30.86%
70% 6.38% 53.25% >55%)

60%
47.06%
50%

84.32% 87.66%

40% 80.85%

78.45%

65.96% 68.63%

30%

51.85%
42.95%

20%

31.37%

10%

0%

ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE
Templates Standard Containers Inheritance & Polymorphism Exception Handling
M Correct ™ False Positives False Negatives Unknown

95

7 (1IN

100%

1.379% 10.37% 10.52%
90%

80%

28.05%

70%

56.25% 1.83%

60%

50%

92.54%

40%
0.15%
30% 59.60%
20%

10%

0%
ESBMC DIVINE LLBMC

C++03

B Correct ™ False Positives False Negatives = Unknown

7N

96

=Xperimental Results

- A comparison regarding the performance of LLBMC and ESBMC, which are SMT-based BMC
model checkers, and DIVINE, which employs explicit-state model checking, was carried out

- ESBMC presented a successful rate of 85% (in 7 hours) and LLBMC 63% (in 12 hours),
overcoming DIVINE that presented 42% (in 49 hours)

10105 T T T T T T T T 3
- — 4+ ESBMC] 1
— 85— LLBMC | -
DIVINE | 1
10°
108 E
1
— 7.‘ —_
2. 10 l'::
> &
o E;
4
6
= 10°%
10° E
104 E
103 | | | | | | | |
0 2 4 6 8 10 12 14 16 18

CPU Time [s] x10*

97

Conclusions

Conclusions

- This work presented an SMT-based BMC approach to
verify C++03 programs using ESBMC v2.0

- ESBMC is able to verify correctly 84.66% (1281

benchmarks) in 25251 seconds (approximately 7 hours),
outperforming other state-of-art C++ verification tools

- 43.29% and 22.27% higher than DIVINE and
LLBMC, respectively

- 7 and 1.7 times faster than DIVINE and LLBMC,
respectively

99

Conclusions

V.

VI.

the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

the formalization of the ESBMC's engine to handle inheritance & polymorphism;
the formalization of all throw & catch exception rules supported by ESBMC;

the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

100

Future Work

Although our C++ frontend is able to support most features of C++, to
improve the frontend for newer versions of the C++ standard is
unmanageable. Thus, one future direction is to rewrite ESBMC's frontend

using clang to generate the program AST for C++ programs

Cpa®

101

Future Work

Although our C++ frontend is able to support most features of C++, to
improve the frontend for newer versions of the C++ standard is
unmanageable. Thus, one future direction is to rewrite ESBMC's frontend

using clang to generate the program AST for C++ programs

A 72

Rewrite the ESBMC'’s frontend for C++
programs requires a major engineering effort

N\ D\J\/\j/

102

Future Work

Although our C++ frontend is able to support most features of C++, to
improve the frontend for newer versions of the C++ standard is
unmanageable. Thus, one future direction is to rewrite ESBMC's frontend

using clang to generate the program AST for C++ programs

- One might focus first on object-oriented aspects to set the foundation of this
approach:

- basic structures of object-oriented programs (e.g., classes, methods,
constructors and destructors)

- template instantiation

- Inheritance and polymorphism*

103

Future Work

Although our C++ frontend is able to support most features of C++, to
improve the frontend for newer versions of the C++ standard is
unmanageable. Thus, one future direction is to rewrite ESBMC's frontend

using clang to generate the program AST for C++ programs

- One might focus first on object-oriented aspects to set the foundation of this
approach:

- basic structures of object-oriented programs (e.g., classes, methods,
constructors and destructors)

- template instantiation
- Inheritance and polymorphism*
This work will set a strong foundation for the full support of C++

programming language in ESBMC.

104

Publications

C++
[ASE 2018] Bounded Model Checking of C++ Programs based on the Qt Cross-Platformm Framework

(Journal-First Abstract).
[IEEE Access 2020] Model Checking C++ Programs.

ESBMC
[SCP 2018] ESBMC-GPU - A Context-Bounded Model Checking Tool to Verity CUDA Programs.

[ASE 2018] ESBMC 5.0 - An Industrial-Strength C Model Checker.
[FSE 2018] Towards Counterexample-Guided k-Induction for Fast Bug Detection.
[NFM 2020] Beyond k-Induction - Learning from Counterexamples to Bidirectionally Explore the State Space.

[FASE 2020] Scalable and Precise Verification based on the Floating-Point Theory,.

Continuous Formal Verification
[TAPAS 2019] Continuous Formal Verification at Scale.
[ICSE 2020] Code-Level Model Checking in the Software Development Workflow.

Media
[Eldorado Institute] Verificacdo Formal e seu Papel no Desenvolvimento de Sistemas Cyber-Fisicos Criticos.
105

Publications

C++
[ASE 2018] Bounded Model Checking of C++ Programs based on the Qt Cross-Platformm Framework

(Journal-First Abstract).
[IEEE Access 2020] Model Checking C++ Programs.% Under review

ESBMC
[SCP 2018] ESBMC-GPU - A Context-Bounded Model Checking Tool to Verity CUDA Programs.

[ASE 2018] ESBMC 5.0 - An Industrial-Strength C Model Checker.
[FSE 2018] Towards Counterexample-Guided k-Induction for Fast Bug Detection.
[NFM 2020] Beyond k-Induction - Learning from Counterexamples to Bidirectionally Explore the State Space.

[FASE 2020] Scalable and Precise Verification based on the Floating-Point Theory,. /\

[Under review

Continuous Formal Verification T Under review
[TAPAS 2019] Continuous Formal Verification at Scale.

[ICSE 2020] Code-Level Model Checking in the Software Development Workflow.

Media
[Eldorado Institute] Verificacdo Formal e seu Papel no Desenvolvimento de Sistemas Cyber-Fisicos Criticos.
106

| ~ (o]
ST 11:02% | 2319
)
@
navgaon | VOLUME 01/01/2018 Osaka, Japan
///:’_\\\\
J3 "4 I i< O | O
7 [N .
Nusic Windows
\\' , / 4 \)\ remparature 24°C :
\\\ /"’ o .
—— { "/ \, [:] %
A < 10%
Viessag RADIO rux —_— Power Air Con,
V-Redio 1055 MI 2 a
P) Yorld Neas 934 MFz
NI TokStep AM 95.0 M2 r ' Low Ii (-~
Command - Coats
AN (EER T §
(J\'-S Sot by ‘D Nam [J Defog |i l
C‘V\(}" ‘D Frequency N ——a” F Recirculate |D ||||||l||
Satrgs @ Favoun tes \\\ // Statistics

Formal Verification to Ensuring the

Felipe R. Monteiro
Memory Safety of C++ Programs

