
Formal Verification to Ensuring the
Memory Safety of C++ Programs

Felipe R. Monteiro

1

Formal Verification to Ensuring
the Memory Safety of C++ Programs

Felipe R. Monteiro
M.Sc. Candidate

Dr. Lucas C. Cordeiro
Supervisor

Federal University of Amazonas
Institute of Computing
Postgraduate Programme in Informatics

Master of Science in Informatics

January 17, 2020
Manaus, Amazonas, Brazil

Problem & Motivation

Security is one of the most
pressing issues of the 21st century

3

4

Consumer electronic products must be
as robust and bug-free as possible,
given that even medium product-return
rates tend to be unacceptable

Not only
safety-critical

systems

5

Consumer electronic products must be
as robust and bug-free as possible,
given that even medium product-return
rates tend to be unacceptable

- “Engineers reported the static analyser Infer was key to build a
concurrent version of Facebook app to the Android platform.”

Peter O’Hearn, FLoC, 2018.

6

- “The majority of vulnerabilities are caused by developers inadvertently
inserting memory corruption bugs into their C and C++ code. As
Microsoft increases its code base and uses more Open Source Software
in its code, this problem isn’t getting better, it’s getting worse.”

Matt Miller, Microsoft Security Response Centre, 2019.

7

“Formal automated reasoning is one of
the investments that AWS is making in
order to facilitate continued simultaneous
growth in both functionality and security.”

Byron Cook, FLoC, 2018.

8

“There has been a tremendous amount of
valuable research in formal methods, but
rarely have formal reasoning techniques
been deployed as part of the development
process of large industrial codebases.”

Peter O’Hearn, FLoC, 2018.

How to apply formal verification to
ensuring memory safety of software

written in the C++ programming language?

The research question is…

9

Apply model checking techniques to ensuring
memory safety of C++ programs

Main goal is to…

10

Apply model checking techniques to ensuring
memory safety of C++ programs

Main goal is to…

11

(i) Provide a logical formalization of essential features that the C++ programming language
offers, such as templates, sequential and associative containers, inheritance, polymorphism, and
exception handling.

(ii) Provide a set of abstractions to the Standard C++ Libraries (SCL) that reflects their
semantics, in order to enable the verification of functional properties related to the use of
these libraries.

(iii) Extend an existing verifier to handle the verification of C++ programs based on (i) and (ii)
and evaluate its efficiency and effectiveness in comparison to similar state-of-the-art approaches.

Apply model checking techniques to ensuring
memory safety of C++ programs

Main goal is to…

12

(i) Provide a logical formalization of essential features that the C++ programming language
offers, such as templates, sequential and associative containers, inheritance, polymorphism, and
exception handling.

(ii) Provide a set of abstractions to the Standard C++ Libraries (SCL) that reflects their
semantics, in order to enable the verification of functional properties related to the use of
these libraries.

(iii) Extend an existing verifier to handle the verification of C++ programs based on (i) and (ii)
and evaluate its efficiency and effectiveness in comparison to similar state-of-the-art approaches.

Apply model checking techniques to ensuring
memory safety of C++ programs

Main goal is to…

13

(i) Provide a logical formalization of essential features that the C++ programming language
offers, such as templates, sequential and associative containers, inheritance, polymorphism, and
exception handling.

(ii) Provide a set of abstractions to the Standard C++ Libraries (SCL) that reflects their
semantics, in order to enable the verification of functional properties related to the use of
these libraries.

(iii) Extend an existing verifier to handle the verification of C++ programs based on (i) and (ii)
and evaluate its efficiency and effectiveness in comparison to similar state-of-the-art approaches.

Contributions

i. the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

ii. the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

iii. the formalization of the ESBMC's engine to handle inheritance & polymorphism;

iv. the formalization of all throw & catch exception rules supported by ESBMC;

v. the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

vi. the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

14

Contributions

i. the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

ii. the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

iii. the formalization of the ESBMC's engine to handle inheritance & polymorphism;

iv. the formalization of all throw & catch exception rules supported by ESBMC;

v. the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

vi. the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

15

Contributions

i. the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

ii. the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

iii. the formalization of the ESBMC's engine to handle inheritance & polymorphism;

iv. the formalization of all throw & catch exception rules supported by ESBMC;

v. the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

vi. the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

16

Contributions

i. the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

ii. the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

iii. the formalization of the ESBMC's engine to handle inheritance & polymorphism;

iv. the formalization of all throw & catch exception rules supported by ESBMC;

v. the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

vi. the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

17

Contributions

i. the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

ii. the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

iii. the formalization of the ESBMC's engine to handle inheritance & polymorphism;

iv. the formalization of all throw & catch exception rules supported by ESBMC;

v. the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

vi. the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

18

Contributions

i. the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

ii. the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

iii. the formalization of the ESBMC's engine to handle inheritance & polymorphism;

iv. the formalization of all throw & catch exception rules supported by ESBMC;

v. the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

vi. the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

19

Contributions

i. the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

ii. the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

iii. the formalization of the ESBMC's engine to handle inheritance & polymorphism;

iv. the formalization of all throw & catch exception rules supported by ESBMC;

v. the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

vi. the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

20

Background Theory

Satisfiability Module Theories,

Bounded Model Checking

& ESBMC Architecture

Satisfiability Modulo Theories

• Symbolic logic formula

22

not x or (y and z)
means

Either x is false or y and z are true (or both)

Satisfiability Modulo Theories

• Symbolic logic formula

23

not x or (y and z)
means

Either x is false or y and z are true (or both)

• Boolean Satisfiability (SAT)
not x or (y and z)

x = false, y = true, z = true

is satisfiable

Satisfiability Modulo Theories

• Symbolic logic formula

24

not x or (y and z)
means

Either x is false or y and z are true (or both)

• Boolean Satisfiability (SAT)
not x or (y and z)

x = false, y = true, z = true

is satisfiable

not x and x
is unsatisfiable

Satisfiability Modulo Theories

• As a generalisation of SAT, and the Boolean variables are replaced
by other first-order theories:
- Equality
- Arithmetic
- Arrays
- Fixed-width bit-vectors
- Inductive data types

25

x = 2

is satisfiable

x2 − 4 = 0

Satisfiability Modulo Theories

• As a generalisation of SAT, and the Boolean variables are replaced
by other first-order theories:
- Equality
- Arithmetic
- Arrays
- Fixed-width bit-vectors
- Inductive data types

26

x = 2

is satisfiable

x2 − 4 = 0

Where the key here is to take the problem
and turn it into an SMT formula

Bounded Model Checking

• Basic Idea: given a transition system M, check negation of a given
property φ up to given depth k

• Translated into a VC ψ such that: ψ is satisfiable iff φ has
counterexample of max. depth k

• BMC has been applied successfully to verify (embedded) software
since early 2000’s.

. . .
M0 M1 M2 Mk-1

¬j0 ¬j1 ¬j2 ¬jk-1 ¬jkÚ Ú Ú Ú

Counterexample trace

Transition
System

Property

BoundMk

27

ESBMC Architecture

• ESBMC is an open source, permissively licensed, context-bounded model
checker based on satisfiability modulo theories for the verification of single- and
multi-threaded C/C++ programs.

• It does not require the user annotates the programs with pre- or postconditions,
but allows the user to state additional properties using assert-statements, that
are then checked as well.

• It converts the verification conditions using different background theories and
passes them directly to an SMT solver.

ESBMC is a joint project with
Federal University of Amazonas
University of Bristol 
University of Manchester
University of Stellenbosch
University of Southampton

28

ESBMC Architecture

29

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

ESBMC Architecture

30

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

Program under
verification

ESBMC Architecture

31

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

ESBMC uses clang to
generates a reliable AST

ESBMC Architecture

32

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

This is an additional
extension for the ESBMC

ESBMC Architecture

33

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

The parser for C++ is
heavily based on the
GNU C++ Compiler

ESBMC Architecture

34

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

A simplified representation that consists only
of assignments, conditional and unconditional

branches, assumes, and assertions

ESBMC Architecture

35

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

ESBMC symbolically executes the GOTO
program and derives all the safety properties

ESBMC Architecture

36

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

ESBMC generates the formula
!⋀¬$

ESBMC Architecture

37

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

ESBMC’s back-end supports 5 solvers:
Boolector, Z3, MathSAT, CVC4, and Yices

ESBMC Architecture

38

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

ESBMC’s back-end supports 5 solvers:
Boolector, Z3, MathSAT, CVC4, and Yices

ESBMC Architecture

39

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

If the formula is SAT, the
program contains a bug

ESBMC Architecture

40

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Execution

GOTO
Converter

C++
Type Check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type Checked

GOTO
Program
(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

ANSI-C IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

Otherwise

Related Work

What is out there?

Related Work

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technique to verify C++ programs.

- Baranová et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

42

Related Work

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technique to verify C++ programs.

- Baranová et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

43

LLBMC

Related Work

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technique to verify C++ programs.

- Baranová et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

44

SATABS

Related Work

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technique to verify C++ programs.

- Baranová et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

45

CIL

Related Work

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technique to verify C++ programs.

- Baranová et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

46

CBMC

Related Work

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technique to verify C++ programs.

- Baranová et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

47

DIVINE

Related Work

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technique to verify C++ programs.

- Baranová et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

48

Related Work

When it comes to the verification of C++ programs, most of the
model checkers available focus on specific features

- Merz, Falke, and Sinz describe the LLBMC tool that uses BMC
technique to verify C++ programs.

- Baranová et al. present DIVINE, an explicit-state model checker to
verify single- and multi-threaded programs written in ANSI-C/C++

49

Approach and Uniqueness

SMT-based Bounded Model
Checking of C++ Programs

SMT-based Bounded Model Checking C++ of Programs

51

Encoding essential features of C++ into SMT:

(i) Primary template and explicit-template & partial-template specialization*

(ii) Standard Template Libraries

Sequential and Associative Containers

(iii) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.)

SMT-based Bounded Model Checking C++ of Programs

52

Encoding essential features of C++ into SMT:

(i) Primary template and explicit-template & partial-template specialization*

(ii) Standard Template Libraries

Sequential and Associative Containers

(iii) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.)

Templates

53

• Templates are used to define functions or classes of generic data type,
which can be later instantiated with a specific data type

Reusability

Source: https://www.geeksforgeeks.org/templates-cpp/

Templates

54

• Templates are used to define functions or classes of generic data type,
which can be later instantiated with a specific data type

Reusability

Templates

55

• Templates are used to define functions or classes of generic data type,
which can be later instantiated with a specific data type

Reusability

• As described by Gadelha et al., in
ESBMC templates are only used until the
type-checking phase

- At the end of the type-checking phase,
all templates are discarded.

Templates

56

Templates

57

Templates

58

instantiations

Templates

59

instantiations

templates

Templates

60

instantiations

templates

specializations

Templates

61

instantiations

templates

specializations

arguments

Templates

62

instantiations

templates

specializations

arguments
names

Templates

63

instantiations

templates

specializations

arguments
names

types

Templates

64

Templates

65

match

Templates

66

match

Select the most specializated template

Templates

67

Templates

68

Templates

69

Template creation

Templates

70

Template instantiation int
Template instantiation float

Templates

71

Template definition
using generic types

Templates

72

Template definition
using generic types

Template instantiation int

Template instantiation float

Templates

73

SSA Form

Templates

74

SMT-based Bounded Model Checking C++ of Programs

75

Encoding essential features of C++ into SMT:

(i) Primary template and explicit-template & partial-template specialization*

(ii) Standard Template Libraries

Sequential and Associative Containers

(iii) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.)

Building Operational Models

• We base the development process of operational models in the
documentation of the Standard C++ Library
- the operational model is an abstract representation, which is used to

identify elements and verify specific properties related to C++ libraries

76

…

<map>
<vector>

SCL Documentation

template < class T,
class Alloc = allocator<T>

> class vector
{

...
bool empty () const;
void at (size_type n);
...

};

Adding
assertions

…
<map> abstraction

<vector> abstraction
SCL Operational Model

template < class T > class vector
{

...
void at (size_type n) {

__ESBMC_assert(n >= 0,
”Index must be equal or
greater than zero.");

}
...

};

Extract/Identify
structure/properties

Operational Models for Containers

"The Containers library is a generic collection of class
templates and algorithms that allow programmers to easily
implement common data structures"

cppreference.com, 2018.
• Sequential containers are built into

a structure to store elements of a
certain type V, in a certain sequential
order.

• Note that all methods, from those
l ibraries, can be expressed as
simplified variat ions of 3 main
operations:
- insertion C.insert (I, V, N)
- deletion C.erase (I)
- search C.search (V)

…

!"#"
#$%&' =)

Pointer

*+,$ = 3

Iterator

Memory

77

Operational Models for Containers

• Associative containers connects
each key, of a certain type K, to a
value, of a certain type V, where
associated keys are stored in order.

• Note that all methods, from those
l ibraries, can be expressed as
simplified variations of three main
operations:

- insertion C.insert (I, V, N)
- deletion C.erase (I)
- search C.search (K)

…

!"#"
#$%&' =)

Pointer I

*+,$ = -.

Iterator I

Memory I

…
Memory II

!"#"
Pointer II Iterator II#$%&' =) *+,$ = -.

78

"The Containers library is a generic collection of class
templates and algorithms that allow programmers to easily
implement common data structures"

cppreference.com, 2018.

SMT-based Bounded Model Checking C++ of Programs

79

Encoding essential features of C++ into SMT:

(i) Primary template and explicit-template & partial-template specialization*

(ii) Standard Template Libraries

Sequential and Associative Containers

(iii) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.)

Inheritance & Polymorphism

80

• C++ features as inheritance and polymorphism make static
analysis difficult to implement.

- multiple inheritance in C++ includes repeated and shared
inheritance of base classes, object identity distinction, dynamic
dispatch that raise interesting challenges for model checking

• ESBMC replicates the methods and
attributes of the base classes to the
inherited class to have direct access
to them

- replicated inheritance

- shared inheritance

Inheritance & Polymorphism

81

Vehicle

+ number_of_wheels()

Car

+ number_of_wheels()

Motorcycle

+ number_of_wheels()

Jet

+ propulse()

JetCar

+ number_of_wheels()

+ propulse()

Inheritance & Polymorphism

82

Inheritance & Polymorphism

83

Inheritance & Polymorphism

84

Inheritance & Polymorphism

85

Inheritance & Polymorphism

86

SMT-based Bounded Model Checking C++ of Programs

87

Encoding essential features of C++ into SMT:

(i) Primary template and explicit-template & partial-template specialization*

(ii) Standard Template Libraries

Sequential and Associative Containers

(iii) Inheritance & Polymorphism

(iv) Exception Handling*

* (R. Gadelha et al.)

Try & Catch Rules

88

• Exceptions are unexpected circumstances that arise during the
execution of a program, e.g., runtime errors.

- a try block, where a thrown exception can be directed to a catch
statement;

- a set of catch statements, where a thrown exception can be
handled; • ESBMC replicates the methods and attributes of the base classes to the

inherited class to have direct access to them

- a throw statement that raises an
exception.

Try & Catch Rules

89

Experimental
Evaluation

Evaluate accuracy & performance
of model checkers targeting C++

90

Objectives

• Experiments aimed at answering two questions regarding
correctness and performance of ESBMC:

(EQ-I) How accurate is ESBMC when verifying the chosen C++03
programs?

(EQ-II) How does ESBMC performance compare to other existing
model checkers?

91

Benchmarks

• Our set of benchmarks contains 1513 C++ programs (89,147 LOC).
- 36% larger than our previous published evaluation;

• The mentioned benchmarks are split into 5 categories:
- Templates: formed by the cbmc, gcc-templates and templates benchmark suites

(94 benchmarks);
- Standard Containers: formed by algorithm, deque, vector, list, queue,

priority_queue, stack, map, multimap, set and multiset test suites (631
benchmarks);

- Inheritance & Polymorphism: formed by inheritance benchmark suite (51
benchmarks);

- Exception: formed by the try_catch benchmark suite (81 benchmarks);
- C++03: formed by cpp, string, and stream benchmark suites (656 benchmarks);

92

Setup

• Compare ESBMC against LLBMC and DIVINE with respect to coverage and
precision in the verification process of C++03 programs
- ESBMC v2.0
- LLBMC v2013.1
- DIVINE v4.0.22

• All experiments were conducted os
- i7-4790 processor, 3.60GHz clock, with 16GB RAM memory
- Ubuntu 14.04 64-bit OS
- time limit of 900 seconds (i.e., CPU time)
- memory limit of 14GG

93

Experimental Results
• A comparison regarding the performance of LLBMC and ESBMC, which are SMT-based BMC

model checkers, and DIVINE, which employs explicit-state model checking, was carried out
- ESBMC presented a successful rate of 85% (in 7 hours) and LLBMC 63% (in 12 hours),

overcoming DIVINE that presented 42% (in 49 hours)

94

65.96%

82.98% 80.85% 78.45%

42.95%

70.36%

84.32%

31.37%

68.63%

87.66%

51.85%

1.06%
2.54%

2.85%

3.70%

4.94%

6.38%

8.51% 11.71%
8.87%

53.25%

17.60%

15.68%

47.06%

5.88%

2.46%

30.86%

27.66%

8.51% 6.38% 10.14%
3.80%

9.19%

21.57%
25.49%

6.17%
12.35%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE

Templates Standard Containers Inheritance & Polymorphism Exception Handling

Correct False Positives False Negatives Unknown

Experimental Results
• A comparison regarding the performance of LLBMC and ESBMC, which are SMT-based BMC

model checkers, and DIVINE, which employs explicit-state model checking, was carried out
- ESBMC presented a successful rate of 85% (in 7 hours) and LLBMC 63% (in 12 hours),

overcoming DIVINE that presented 42% (in 49 hours)

95

65.96%

82.98% 80.85% 78.45%

42.95%

70.36%

84.32%

31.37%

68.63%

87.66%

51.85%

1.06%
2.54%

2.85%

3.70%

4.94%

6.38%

8.51% 11.71%
8.87%

53.25%

17.60%

15.68%

47.06%

5.88%

2.46%

30.86%

27.66%

8.51% 6.38% 10.14%
3.80%

9.19%

21.57%
25.49%

6.17%
12.35%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE

Templates Standard Containers Inheritance & Polymorphism Exception Handling

Correct False Positives False Negatives Unknown

Experimental Results
• A comparison regarding the performance of LLBMC and ESBMC, which are SMT-based BMC

model checkers, and DIVINE, which employs explicit-state model checking, was carried out
- ESBMC presented a successful rate of 85% (in 7 hours) and LLBMC 63% (in 12 hours),

overcoming DIVINE that presented 42% (in 49 hours)

96

92.54%

33.23%

59.60%

1.37%

0.15%

1.83%

2.28%

56.25%

28.05%

3.81%
10.37% 10.52%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ESBMC DIVINE LLBMC

C++03

Correct False Positives False Negatives Unknown

0 2 4 6 8 10 12 14 16 18
CPU Time [s]

×104

103

104

105

106

107

108

109

1010

M
e

m
o

ry
 [

K
b

]

ESBMC
LLBMC
DIVINE

Experimental Results
• A comparison regarding the performance of LLBMC and ESBMC, which are SMT-based BMC

model checkers, and DIVINE, which employs explicit-state model checking, was carried out
- ESBMC presented a successful rate of 85% (in 7 hours) and LLBMC 63% (in 12 hours),

overcoming DIVINE that presented 42% (in 49 hours)

97

Conclusions

Conclusions

• This work presented an SMT-based BMC approach to
verify C++03 programs using ESBMC v2.0

• ESBMC is able to verify correctly 84.66% (1281
benchmarks) in 25251 seconds (approximately 7 hours),
outperforming other state-of-art C++ verification tools

- 43.29% and 22.27% higher than DIVINE and
LLBMC, respectively

- 7 and 1.7 times faster than DIVINE and LLBMC,
respectively

99

Conclusions

100

i. the formal description of how ESBMC handles primary template, explicit-
template specialization, and partial-template specialization;

ii. the operational model structure to handle new features from the SCL (e.g.,
sequential and associative template-based containers);

iii. the formalization of the ESBMC's engine to handle inheritance & polymorphism;

iv. the formalization of all throw & catch exception rules supported by ESBMC;

v. the expressive set of publicly available benchmarks designed specifically to
evaluate software verifiers that target the C++ programming language;

vi. the extensive comparative evaluation of state-of-the-art software model
checkers on the verification of C++ programs;

Future Work

101

Although our C++ frontend is able to support most features of C++, to
improve the frontend for newer versions of the C++ standard is

unmanageable. Thus, one future direction is to rewrite ESBMC's frontend
using clang to generate the program AST for C++ programs

Future Work

102

Rewrite the ESBMC’s frontend for C++
programs requires a major engineering effort

Although our C++ frontend is able to support most features of C++, to
improve the frontend for newer versions of the C++ standard is

unmanageable. Thus, one future direction is to rewrite ESBMC's frontend
using clang to generate the program AST for C++ programs

Future Work

103

• One might focus first on object-oriented aspects to set the foundation of this
approach:
- basic structures of object-oriented programs (e.g., classes, methods,

constructors and destructors)
- template instantiation
- inheritance and polymorphism*

This work will set a strong foundation for the full support of C++
programming language in ESBMC.

Although our C++ frontend is able to support most features of C++, to
improve the frontend for newer versions of the C++ standard is

unmanageable. Thus, one future direction is to rewrite ESBMC's frontend
using clang to generate the program AST for C++ programs

Future Work

104

• One might focus first on object-oriented aspects to set the foundation of this
approach:
- basic structures of object-oriented programs (e.g., classes, methods,

constructors and destructors)
- template instantiation
- inheritance and polymorphism*

This work will set a strong foundation for the full support of C++
programming language in ESBMC.

Although our C++ frontend is able to support most features of C++, to
improve the frontend for newer versions of the C++ standard is

unmanageable. Thus, one future direction is to rewrite ESBMC's frontend
using clang to generate the program AST for C++ programs

Publications

105

C++
[ASE 2018] Bounded Model Checking of C++ Programs based on the Qt Cross-Platform Framework
 (Journal-First Abstract).
[IEEE Access 2020] Model Checking C++ Programs.

ESBMC
[SCP 2018] ESBMC-GPU - A Context-Bounded Model Checking Tool to Verify CUDA Programs.
[ASE 2018] ESBMC 5.0 - An Industrial-Strength C Model Checker.
[FSE 2018] Towards Counterexample-Guided k-Induction for Fast Bug Detection.
[NFM 2020] Beyond k-Induction - Learning from Counterexamples to Bidirectionally Explore the State Space.
[FASE 2020] Scalable and Precise Verification based on the Floating-Point Theory.

Continuous Formal Verification
[TAPAS 2019] Continuous Formal Verification at Scale.
[ICSE 2020] Code-Level Model Checking in the Software Development Workflow.

Media
[Eldorado Institute] Verificação Formal e seu Papel no Desenvolvimento de Sistemas Cyber-Físicos Críticos.

Publications

106

C++
[ASE 2018] Bounded Model Checking of C++ Programs based on the Qt Cross-Platform Framework
 (Journal-First Abstract).
[IEEE Access 2020] Model Checking C++ Programs.

ESBMC
[SCP 2018] ESBMC-GPU - A Context-Bounded Model Checking Tool to Verify CUDA Programs.
[ASE 2018] ESBMC 5.0 - An Industrial-Strength C Model Checker.
[FSE 2018] Towards Counterexample-Guided k-Induction for Fast Bug Detection.
[NFM 2020] Beyond k-Induction - Learning from Counterexamples to Bidirectionally Explore the State Space.
[FASE 2020] Scalable and Precise Verification based on the Floating-Point Theory.

Continuous Formal Verification
[TAPAS 2019] Continuous Formal Verification at Scale.
[ICSE 2020] Code-Level Model Checking in the Software Development Workflow.

Media
[Eldorado Institute] Verificação Formal e seu Papel no Desenvolvimento de Sistemas Cyber-Físicos Críticos.

Under review

Under review Under review

Formal Verification to Ensuring the
Memory Safety of C++ Programs

Felipe R. Monteiro

107

