
Bounded Model Checking of C++ Programs
Based on the Qt Framework

Felipe R. M. Sousa, Lucas C. Cordeiro, and Eddie B. de Lima Filho
Electronic and Information Research Centre

Federal University of Amazonas

I. Introduction
•  The present work identifies the main Qt features used in

real applications and, based on that, creates an operational
model, which provides a way to analyse and check
properties related to those features.

For further information, publications, and
downloads, see:
http://www.esbmc.org/
Part of the results presented in this paper
were sponsored by Samsung Eletrônica
da Amazônia Ltda. under the terms of
Brazilian federal law No. 8.387/91 (SUFRAMA).

Interpret
Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Select
SMT Solver

GOTO
Symex

GOTO
Program

IRep
Trees

Parse
Tree

C/C++
Source

Property
holds up to
bound k

Property
violation

Scan Type Check Control Flow-Graph

Symbolic
Execution

SSA Form

ESBMC++

•  ESBMC++ is a bounded model checker based on SMT
solvers, which is used for ANSI-C/C++ single- and multi-
threaded programs. Properties checked:
-  arithmetic under- and overflow, division by zero, out-of-bounds

index, pointer safety, deadlocks, and data races, and
assertions defined by user.

Apply bounded model checking to verify C++/Qt programs

Proposal

II. Verifying C++ Programs Based on the
Qt Cross-Platform Framework

•  B a s e d o n t h e f r a m e w o r k
documentation, the operational
model was developed (QtOM),
which considers the structure of
each library and its classes,
including attributes, method
s i g n a t u r e s , a n d f u n c t i o n
prototypes.

Operational
Model

Source Code

δ

ESBMC++

Counterexample

Verification
Successful

Property holds up to bound k

Property violation

•  A condition that must be fulfilled before a function or
method can be executed.
-  Checked through assertions in the operational model;
-  When the a method/function is called, ESBMC++ interprets

its behaviour as implemented in the operational model.

Post-conditions

•  An assertion that characterizes the state of the program
immediately after execution of a certain function or method.

Pre-conditions

#include <QList>!
#include <cassert>!
... !
int main () !
{ !
 ... !
 QList<int> mylist; !
 mylist.push_front(300); !
 assert(mylist.front() == 300); !
 mylist.push_front(200); !
 assert(mylist.front() == 200); !
 ... !
}

template<class T> !
class QList { !
 ... !
 void push_front(const value_type& x){ !
 if(this->_size != 0) { !
 for(int i = this->_size -1; i > -1; i--) !
 this->_list[i+1] = this->_list[i]; !
 } !
 this->_list[0] = x; !
 this->_size++; !
 } !
 T& front() { !
 __ESBMC_assert(!isEmpty(), !
 ``The list must not be empty''); !
 return this->_list[0]; !
 } !
 ... !
}

Code Fragment
Operational Model

III. Experimental Evaluation
•  Currently, esbmc-qt test suite contains 52 benchmarks,

which take about 48 seconds to be verified.

CONCLUSIONS
•  This paper proposes an approach to verify C++/Qt programs

using an operational model.

•  The experimental results show the efficiency of this
approach for verifying Qt programs and present, for the
developed test suite, a success rate of 94.45%.

•  As future work, more classes and libraries will be integrated
into the operational model, in order to increase Qt
framework coverage and validate its properties.

Test Suite
Coverage

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk ∨ ∨ ∨ ∨

transition
system

property

bound counterexample trace

Bounded Model Checking

 Translated into a VC ψ such that: ψ is satisfiable iff φ has
 counterexample of max. depth k

-  a “false incorrect” occurs
when there is no error and
ESBMC++ finds a violation.

-  and a “failed” happens when
ESBMC++ crashes during
verification.

•  One needs to simulate the
behaviour of a certain method to
consistently verify properties
related to the manipulation or
storage of values in a structure.

Methods
Signatures

Assertions
Preconditions

Simulation
Postconditions

QtOM

