Bounded Model Checking of C++ Programs
Based on the Qt Framework

Felipe R. M. Sousa, Lucas C. Cordeiro, and Eddie B. de Lima Filho
Electronic and Information Research Centre
Federal University of Amazonas

I. Introduction

 The present work identifies the main Qt features used in
real applications and, based on that, creates an operational
model, which provides a way to analyse and check
properties related to those features.

Bounded Model Checking property
/_ICPO v P v TPy _'(Pk-1\ Y _'(Pk(/
transition O - O -O - O -O
system My M, M, M, . M,
\counterexample trace Y “-bound

Translated into a VC such that: @ is satisfiable iff ¢ has
counterexample of max. depth k

ESBMC++

« ESBMC++ is a bounded model checker based on SMT
solvers, which is used for ANSI-C/C++ single- and multi-
threaded programs. Properties checked.:

- arithmetic under- and overflow, division by zero, out-of-bounds
iIndex, pointer safety, deadlocks, and data races, and
assertions defined by user.

-

|
GoTo | Control Flow-Graph IRep | lype Check Parse Scan CIC++
Program | Trees i Tree I Source
|
Symbqlic Verification Successful
Execution » Convert Constraints
Property
holds up to
—t bound k
|
GOTO | SSA Formt Select Logical . SMT
Symex | SMT Solver Context Solver
|
Property
violation
» Convert Properties
Interpret
Counterexample
Proposal

Apply bounded model checking to verify C++/Qt programs

II. Veritying C++ Programs Based on the
Qt Cross-Plattorm Framework

[<Counterexample>

Source Code

-

Property violation

ESBMC++

[
Operational %
Model

Property holds up to bound k

Verification
Successful

Pre-conditions

« A condition that must be fulfilled before a function or

method can be executed.
- Checked through assertions in the operational model;
- When the a method/function is called, ESBMC++ interprets
its behaviour as implemented in the operational model.

Post-conditions

« An assertion that characterizes the state of the program

immediately after execution of a certain function or method.

#include <QList>
#1nclude <cassert> * One needs to simulate the

int main ()

behaviour of a certain method to

1 consistently verify properties
QList<int> mylist; related to the manipulation or
mylist.push_front(300); r f val in - -
assert(mylist.front() == 300); sto age ot values a structure.
mylist.push_front(200);— — .
assert(mylist.front() == 200); |

¥

Operational Model

Code Fragment

template<class T>

c Based on the framework Methods

QtOM

documentation, the operational Signatures

model was developed (QtOM),
which considers the structure of
each library and Iits classes,
including attributes, method
sighatures, and function
prototypes.

Assertions
Preconditions

Simulation
Postconditions

For further information, publications, and
downloads, see:

http://www.esbmc.org/

Part of the results presented in this paper

were sponsored by Samsung Eletrénica

da Amazonia Ltda. under the terms of

Brazilian federal law No. 8.387/91 (SUFRAMA).

class QList {

void push_front(const value_type& x){——"-
if(this—>_size != 0) {
for(int i = this->_size -1; i > -1; i-—-)
this—>_list[i+1] = this—>_list[i];
¥
this—>_ 1list[0] = x;
this—>_size++;
}
T& front() {
__ESBMC_assert(!isEmpty(),
“"The list must not be empty'');
return this—> 1list[0];

}

}

I11. Experimental Ivaluation

 Currently, esbmc-qt test suite contains 52 benchmarks,
which take about 48 seconds to be verified.

Test Suite

3.70% 1.85% Coverage

- a “false Incorrect’” occurs
when there IS no error and
ESBMC++ finds a violation.

"W Success
False Incorrect
® Falled

- and a “failed” happens when
ESBMC++ crashes during
verification.

94.45%

CONCLUSIONS

* This paper proposes an approach to verify C++/Qt programs
using an operational model.

« The experimental results show the efficiency of this
approach for verifying Qt programs and present, for the
developed test suite, a success rate of 94.45%.

* As future work, more classes and libraries will be integrated
into the operational model, in order to increase Qt
framework coverage and validate its properties.

