
Towards Counterexample-Guided k-Induction
for Fast Bug Detection

Mikhail R. Gadelha
∗

University of Southampton

United Kingdom

Felipe R. Monteiro

Federal University of Amazonas

Brazil

Lucas C. Cordeiro

University of Manchester

United Kingdom

Denis A. Nicole

University of Southampton

United Kingdom

ABSTRACT
Recently, the k-induction algorithm has proven to be a successful

approach for both finding bugs and proving correctness. However,

since the algorithm is an incremental approach, it might waste

resources trying to prove incorrect programs. In this paper, we

extend the k-induction algorithm to shorten the number of steps

required to find a property violation. We convert the algorithm

into a meet-in-the-middle bidirectional search algorithm, using the

counterexample produced from over-approximating the program.

The main advantage is in the reduction of the state explosion by

reducing the maximum required steps from k to ⌊ k
2
+ 1⌋.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; • Theory of computation→ Verification by model checking;
• Hardware→ Bug detection, localization and diagnosis;

KEYWORDS
Bounded Model Checking; k-induction; Formal Software Verifica-

tion; Bug Detection.

ACM Reference Format:
Mikhail R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and Denis A.

Nicole. 2018. Towards Counterexample-Guided k-Induction for Fast Bug

Detection. In Proceedings of the 26th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3236024.3264840

1 INTRODUCTION
Embedded systems are used in a variety of applications, ranging

from nuclear plants and automotive systems to entertainment and

games [10]. This ubiquity drives a need to test and validate a system

before releasing it to the market, in order to protect against system

∗
E-mail: esbmc@googlegroups.com

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00

https://doi.org/10.1145/3236024.3264840

failures. Even subtle system bugs can have drastic consequences,

such as the recent Heartbleed bug on OpenSSH, which might have

leaked private information from several servers [7].

One promising technique to verify embedded software is called

bounded model checking (BMC) [3]. The basic idea of BMC is to

check the negation of a property at a given depth: given a transition

systemM , a property ϕ, and a bound k , BMC unrolls the system k
times and generates verification conditions (VC)ψ , such thatψ is

satisfiable iff ϕ has a counterexample of depth k or less. BMC tools

based on Boolean Satisfiability (SAT) or Satisfiability Module Theo-

ries (SMT) have been applied on the verification of both sequential

and parallel programs [5, 6, 14, 15]. However, BMC tools are aimed

at finding bugs; they cannot prove correctness, unless the bound k
safely reaches all program states [9].

Although BMC cannot prove correctness by itself (unless it fully

unwinds the program), there are algorithms that use BMC as a “com-

ponent” to prove partial correctness. In particular, the k-induction
algorithm is an incremental approach that aims to find bugs and

prove correctness using an ever increasing number of unwindings.

In this paper, we propose to extend the algorithm originally devel-

oped for k-induction to shorten the number of iterations required

to find a property violation. Our main original contribution is an

extension to the k-induction algorithm, which converts the algo-

rithm into a meet-in-the-middle bidirectional search by using the

counterexample generated by the inductive step (cf., Section 3). In

fact, the preliminary results show empirically that the number of

steps required to find a property violation is reduced to ⌊ k
2
+ 1⌋ and

the verification time for programs with large state space is reduced

considerably (cf., Section 4).

1 int main() {
2 uint32_t n;
3 uint64_t sn = 0;
4 for (uint64_t i = 1; i <= n; i++) {
5 sn = sn + 2;
6 assert(sn == i * 2);
7 }
8 assert(sn == n*2 || sn == 0);
9 }

Figure 1: ANSI-C program example with an upper-bound
limit up to 2

32 − 1.

765

https://doi.org/10.1145/3236024.3264840
https://doi.org/10.1145/3236024.3264840

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA M. R. Gadelha, F. R. Monteiro, L. C. Cordeiro, and D. A. Nicole

2 THE K-INDUCTION ALGORITHM
The first version of the k-induction algorithm was proposed by

Sheeran et al. [16]; they apply BMC to find bugs and prove cor-

rectness. BMC tools cannot prove correctness unless the bound

1 uint64_t i = 1;
2 if(i <= n) {
3 sn = sn + 2;




k copies4 assert(sn == i * 2);
5 i++;
6 }
7 // unwinding assertion
8 assert (!(i<=n));

Figure 2: Finite k unwindings done
by BMC.

k is appropriate to

reach the complete-

ness threshold (i.e., a
value that will fully

unroll all loops oc-

curring in the pro-

gram, often impracti-

cally large) [12]. For

instance, consider the

simple program shown

in Figure 1, the asser-

tion in line 8 always

holds, regardless of the initial value of n in line 2. BMC tools such as

CBMC [5], ESBMC [6] or LLBMC [13] typically reproduce the loop

k times (lines 4 – 7 in Figure 1) as the code snippet in Figure 2 and

are unable to verify that program unless the loop is fully unrolled,

i.e., the unwinding assertion fails if k < 2
32 − 1.

Let a given program P under verification be a finite transition

systemM . Consider that T (si , si+1) is the transition relation forM
over the state variables si and si+1, Φ is the set of safety properties,

ϕ (s) is the formula encoding for states satisfying a safety property,

andψ (s) is the formula encoding for states satisfying a completeness

threshold [12], which can be smaller than or equal to the maximum

number of loop-iterations occurring in the program. Based on such

formalization, the k-induction algorithm performs three checks

for each step k : the base case Bk (k), forward condition Fk (k) and
inductive step Ik (k), for k = [1,d], where d is the depth of the

transition system M [9]. In the first check, the base case Bk (k)
works as the standard BMC approach and it is satisfiable iff Bk (k)
has a counterexample of length k or less [2]:

Bk (k) = ∃s1 . . . sk .I (s1) ∧
k−1∧
i=1

T (si , si+1) ∧
k∨
i=1
¬ϕ (si). (1)

In the second check, the forward condition Fk (k) checks if the
completeness thresholdψ (s) holds for the current k . This is estab-
lished by checking if the following is unsatisfiable:

Fk (k) = ∃s1 . . . sk .I (s1) ∧
k−1∧
i=1

T (si , si+1) ∧
k∨
i=1
¬ψ (si). (2)

No safety property ϕ (s) is checked in Fk (k) as they were already
checked for the current k in the base case. Finally, the inductive step
Ik (k) checks if whenever ϕ (s) holds in k states (i.e., s1, . . . , sk), ϕ (s)
also holds for the next state sk+1. This is established by checking if

the following is unsatisfiable:

Ik (k) = ∃s1 . . . sk+1.
k∧
i=1

(ϕ (si) ∧T (si , si+1)) ∧ ¬ϕ (sk+1). (3)

Therefore, the k-induction algorithm at a given k is:

kind (P ,k) =




P has a bug, if ¬Bk (k),

P is correct, if Bk (k) ∧ [Fk (k) ∨ Ik (k)] ,

kind (P ,k + 1), otherwise.

(4)

It worth noticed in Eq. (4) that a bug is only reported in the

base case (i.e., Bk (k)) and if a violation is reported in the inductive

step (i.e., Ik (k)) the algorithm assumes the results is spurious, thus,

it calls itself recursively for the next iteration. The k-induction
algorithm is a complete and optimal search algorithm (i.e., always
find the shortest counterexample), with complexityO (bd) and state
space O (b+d+) [9]. Indeed, Jovanović et al. [11] show that the k-
induction proof rule can be more powerful and concise than regular

induction.

3 COUNTEREXAMPLE-GUIDED
K-INDUCTION ALGORITHM

The k-induction algorithm is being applied to solve a number of

different verification problems, but it has its own limitations. The

biggest one is the fact that it performs three checks for each k (i.e.,
base case, forward condition and inductive step). The inductive step

Ik (k) is the most computationally expensive one; it is an overap-

proximation, forcing the SMT solver to find a set of assignments

in a larger state space than the original program [9]. Moreover,

the computation is wasted if a counterexample is found by the

inductive step, as it is assumed to be spurious (cf. Section 2).

Consider a program P modeled as a state transition system M
contains a set of variablesV = {v1, . . . , vn }, where n is the number

of variables in the program. In the state transition system M , an

state si is a tuple ⟨pc , Vi ⟩, where pc is the program counter and

Vi = {v
i
1
, . . . , vin } are the values of all program variables in that

state. A transition t is a guarded assignment ⟨[γ], x := e⟩, where
γ is a predicate over the program variables and e is an expression

assigned to x.

Definition 1. Counterexample is a sequence of states π =
⟨si , . . . , ξ ⟩ of length k that represents a path from an initial state si
to an error state ξ .

In order to tackle the aforementioned problems in the k-induction
algorithm, we propose to use the counterexample generated by the

inductive step to speed up the bug finding check (i.e., the base

case). Our extension converts the k-induction algorithm into a

bidirectional search approach by searching simultaneously both

forward (i.e., from the initial state s1) and backward (i.e., from the

error state ξ detected in the inductive step Ik (k)) and stop if both

searches meet in the middle as shown in Figure 3.

The base case Bk (k) is the forward part of the algorithm, since

it tries to find a counterexample πB = ⟨s1, . . . , ξ ⟩ that represents a
path from the initial state of the program P (i.e., s1) to an error state

ξ . The inductive step Ik (k) is the backward part of the algorithm;

it tries to find a counterexample πI = ⟨sd , . . . , ξ ⟩, from any depth

d in the state transition systemM .

Lemma 1. The counterexample πI = ⟨sd , . . . , ξ ⟩ produced by the
inductive step Ik (k) is a path that leads to a property violation (i.e.,
an error state ξ); reaching any value in that path (i.e., sd , sd+1, . . . ,
ξ) will lead to this property violation.

Based on Lemma 1, if at least one state of πI is reachable from
the initial state s1, then the error state ξ is reachable from the initial

state s1. Thus, given a counterexample πI = ⟨si , . . . , ξ ⟩ from the

inductive step, our extension selects the first state sd = ⟨pc , Vd ⟩

766

Towards Counterexample-Guided k-Induction for Fast Bug Detection ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

s1

s2 s3

s4 s5 s6

...

sn−9 sn−8 sn−7

sn−6 sn−5

sn−4 sn−3 sn−2 ξ

sn−1 sn

k = 1

k = 2

k = 3

k = d − 3

k = d − 2

k = d − 1

k = d

Bk (k)

Ik (k)

Figure 3: Visual representation of our extension. Each
dashed section represents the states reachable after k iter-
ations. The arrows show the “direction” of the verification
by the base case Bk (k) and the inductive step Ik (k). The for-
ward condition Fk (k) is not shown in this representation but
it is a forward check, similar to Bk (k).

and translates it into a new safety property:

φ (si , sd) =
n∧
j=1

vij = v
d
j (5)

which checks if a given state si is the first state in the counterex-

ample. Given the optimal nature of the algorithm, this is sufficient

to find the property violation. Our algorithm then defines a new

base case step B′k (k, sd) as

∃s1 . . . sk .I (s1) ∧
k−1∧
i=1

T (si , si+1) ∧
k∨
i=1
¬(ϕ (si) ∧ φ (si , sd)). (6)

Thus, our proposed extension checks, in the new base case

B′k (k, sd), whether we can reach any value in path πI . Note that
this will only be applied to assertions inside a loop, as the inductive

step only overapproximates loop variables. The algorithm will still

be complete and, assuming that the error state is reachable in k

steps from the initial state, the solution will be found in ⌊ k
2
+ 1⌋,

because the forward and backward searches each have to go only

half way. Our extension repurposes the goal of the inductive step,

from proving correctness to find paths that lead to error states ξ .
There are cases where our approach is not effective, in partic-

ular, in cases where the error state found by the inductive step is

unreachable (originated from a spurious counterexample), in which

case the verification process is equivalent to plain k-induction (little
to no overhead is introduced by our extension). Multiple reachable

error states are not an issue, as all of them will be checked in the

base case individually.

3.1 Running Example

1 unsigned int a = 1;
2 while (1)
3 {
4 if(a == 6)
5 assert (0);
6 a++;
7 }

(a) Original program

1 unsigned int a = 1;
2 while (1)
3 {
4 if(a == 6)
5 assert (0);
6 a++;
7 // added assertion
8 assert(a != 5);
9 }

(b) Modified program

Figure 4: Code snippet example.

Consider our extended k-induction algorithm applied to the

code snippet shown in Figure 4a. It requires 6 iterations to reach

the assertion failure. This means that the base case Bk (k) will be
called 6 times (i.e., k = [1 .. 6]), thus, the forward condition Fk (k)
and the inductive step Ik (k) will be called 5 times each (i.e., k =
[1 .. 5]). The base case will produce, for k = 6, the counterexample

πB = ⟨s1 → ⟨1, a = 1⟩, s2 → ⟨2, a = 2⟩, s3 → ⟨3, a = 3⟩, s4 →
⟨4, a = 4⟩, s5 → ⟨5, a = 5⟩, s6 → ⟨6, a = 6⟩, ξ → ⟨7, assert(0)⟩⟩,

s1start

s2

s3

s4

s5

s6

ξ

a := 1

a := 2

a := 3

a := 4

a := 5

a := 6

Bk (k)

Ik (k)

Figure 5: Unrolled state
transition system M from
code snippet in Figure 4a
and the “direction” of
the verification for the
base case Bk (k) and the
inductive step Ik (k).

which is a set of assign-

ments that leads to an asser-

tion failure. Now, consider

the counterexample π 1I =

⟨s6 → ⟨6, a = 6⟩, ξ →

⟨7, assert(0)⟩⟩ generated

by the inductive step for

k = 1, or π 2I = ⟨s5 →
⟨5, a = 5⟩, s6 → ⟨6, a = 6⟩, ξ →
⟨7, assert(0)⟩⟩ for k = 2.

For k = 1, the property viola-

tion is reachable when a ==
6, in that case, the inductive

step can be interpreted as the

question “is there counterex-

ample of size 1 in the pro-

gram?”. Furthermore, each k
increment extends the set of

assignments in the path back

to the initial state, e.g., k = 2

can be interpreted as the ques-

tion “is there counterexample

of size 2 in the program?”, and

so forth.

Figure 4b shows the mod-

ified program from Figure 4a,

based on the counterexam-

ple π 2I ; the program contains

one variable so our extension

only asserts one inequality.

For k = 2, the first state reachable in the path to the error state

767

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA M. R. Gadelha, F. R. Monteiro, L. C. Cordeiro, and D. A. Nicole

is a := 5, as previously shown by the counterexample. For k = 3,

the first reachable state is a := 4 and the program will be changed

accordingly during the verification. Figure 5 shows the unrolled

state transition systemM and the “direction” of the verification for

the base case and the inductive step, the latter based on the coun-

terexample. Through that approach, every time that the inductive

step produces a counterexample, our k-induction extension will

collect the first state of this counterexample and will add a new

safety property in the state transition systemM , which will reduce

the state space to be explored.

4 EXPERIMENTAL EVALUATION
In order to evaluate our k-induction algorithm extension, we se-

lected a number of benchmarks from the International Competition

on Software Verification (SV-COMP) 2017 [1]. We compare the

results from the original k-induction and our extended version.

Currently, our extension is able automatically to identify the initial

state from the counterexample generated by the inductive step,

but it is unable to correctly generate and add the new verification

property φ (si , sd) required by B′k (k, sd). As a result, the programs

evaluated by our extensionweremanually changed to add the initial

state sd of the counterexample generated by the inductive step. In

order to establish a fair comparison, we also add the time to obtain

the initial state to our extended k-induction. We do not compare

our extended k-induction to plain BMC since we are interested in

checking the efficiency and efficacy of our new approach compared

to the existing k-induction algorithm.

Benchmark description. The benchmarks called sum0* are
similar to the program in Figure 1, but contain a bug in different

depths. The benchmarks rangesum* check if a function is “determin-

istic” w.r.t. all possible permutations of an input array; the number

in the benchmark name represents the size of the array. The bench-

mark const checks if a constant holds after 1024 iterations (but

checks the wrong value after the iterations); diamond checks if

a counter that is being nondeterministically incremented is even

after 99 iterations; and Problem01_label15 is the representation of a

reactive system.

Experimental setup. All experiments were conducted on a

computer with an Intel Core i7-2600 running at 3.40GHz and 24GB

of RAM under Fedora 25 64-bit. We used ESBMC v5.0 [8] and no

time or memory limit were set for the verification tasks.

Availability of data & tools. Our experiments are based on a

set of publicly available benchmarks. All tools, benchmarks, and

results of our evaluation are available on our web page.
1

4.1 Preliminary Results
Table 1 shows the preliminary results obtained from the original k-
induction and our proposed extension. Here, LOC is the number of

lines in the program, T is the time needed to verify the program in

seconds,M is the memory used by the tools to verify the programs

in megabytes
2
and k is the number of steps needed to find the bug.

The last lines show the average and cumulative numbers for each of

1
http://esbmc.org/

2
We used the command /usr/bin/time -v from linux to measure both the time and

the memory usage

the columns. We order the benchmarks in relation to the memory

required by the original k-induction.

Table 1: Preliminary evaluation over the SV-COMP 2017
benchmarks.

Benchmark k-induction Extended k-induction
LOC T (s) M (MB) k T (s) M (MB) k

sum04.c 19 1 38.7 9 1 38.7 5

sum01.c 18 1 38.9 11 1 38.8 6

sum03.c 25 3 39.1 11 1 38.8 6

diamond1.c 24 13 43.6 51 6 39.1 26

rangesum.c 64 7 66.2 4 1 39.0 2

rangesum05.c 59 11 72.3 6 1 65.4 3

rangesum10.c 59 28 78.2 11 16 47.5 6

Problem01_label15.c 594 7 87.3 5 5 70.3 4

rangesum20.c 59 101 99.9 21 26 78.2 12

rangesum40.c 59 847 269.5 41 90 113.9 22

const.c 20 2606 796.6 1025 890 253.2 513

rangesum60.c 59 80272 1106.9 61 159 134.6 32

Average 88 6991 228.1 104 99 79.8 53

Total 1059 83897 2737.2 1255 1197 957.5 638

The first noticeable aspect of the results is that the time of the

verification is not related to the number of steps or the program

size. The closest predictor of the verification time is the state space

explored by each step (more specifically the inductive step), the

bigger the state space, the longer it will take to find a solution; this

can be approximated by the memory used by the tool during the

verification.

The evaluation for this set of benchmarks shows that our ex-

tension to the k-induction algorithm potentially cuts the verifica-

tion time considerably in cases where the state space explored is

large. For small cases (e.g., the sum0*.c benchmarks), our extension

does not slow things down or use more memory than the original

k-induction; for large cases, the gains are substantial (e.g., the veri-
fication time of rangesum60.c is 504x faster). In terms of the steps

needed to find the bug, the extended version of the k-induction
required ⌊ k

2
+ 1⌋, as expected.

We also compared the results of the extended k-induction with

an incremental BMC approach and we observed that our extended

k-induction is as good as an incremental BMC, in most cases. The

extended k-induction is as fast as the incremental BMC for small

bounds (and it is even faster than the incremental BMC approach on

rangesum60.c), and it is not as slow as the original k-induction for

large bounds. Our approach lies between the original k-induction
and the incremental BMC, it is able to prove correctness and find

bugs consuming less resources (i.e., time and memory) than the

original k-induction but, when the program is unsafe, it is slower

than the incremental BMC.

5 RELATEDWORK
Bischoff et al. [4] propose a methodology to use BDDs and SAT

solvers for the verification of programs. The BDDs are responsi-

ble for the target enlargement, collecting the under-approximate

reachable state sets, followed by the SAT-based verification with

the newly computed sets. The authors implemented the technique

in the Intel BOolean VErifier (BOVE) and showed that the time

was up to five times smaller. Compared to this work, we only use

k-induction and SMT solvers; the inductive step in the k-induction
algorithm is responsible for enlarging the target and the SMT solver

checks for satisfiability.

768

http://esbmc.org/

Towards Counterexample-Guided k-Induction for Fast Bug Detection ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Jovanović et al. [11] present a reformulation of IC3, separating

the reachability checking from the inductive reasoning. They fur-

ther replace the regular induction algorithm by the k-induction
algorithm and show that it providesmore concise invariants. The au-

thors implemented the algorithm in the SALLYmodel checker using

Yices2 to do the forward search and MathSAT5 to do the backward

search. They showed that the new algorithm is able to solve a num-

ber of real-world benchmarks at least as fast as other approaches.

Compared to this work, our proposed extended k-induction uses

consecutive BMC calls to find a solution. We also implement our

approach independent of solvers and it can be used with any SMT

solver supported by ESBMC; both searches, however, will be done

with the same solver.

6 CONCLUSION
In this paper, our main contribution is a novel extension to the

k-induction algorithm, to perform a bidirectional search instead

of the conventional iterative deepening search. The extension is

currently under development using ESBMC. We plan to evaluate

the improvement over the SV-COMP benchmarks, where the origi-

nal k-induction algorithm already proved to be the state-of-art, if

compared to other k-induction tools [1]. The preliminary results

show that the extension has the potential to substantially improve

the verification time for problems with large state space, while

maintaining a small verification time for small programs. In one

particularly large program (in terms of state space), our extension

allowed the k-induction algorithm to find the property violation

on average using half of the steps and a fraction of the resources.

REFERENCES
[1] Dirk Beyer. 2017. Software Verification With Validation Of Results (Report On

SV-COMP 2017). In TACAS (LNCS), Vol. 10206. 331–349.

[2] Armin Biere. 2009. Handbook Of Satisfiability. Vol. 185. IOS Press, Chapter 14,
455–481.

[3] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Sym-

bolic Model Checking Without BDDs. In TACAS (LNCS), Vol. 1633. 193–207.
[4] Gabriel P. Bischoff, Karl S. Brace, G. Cabodi, and S. Nocco, S.and Quer. 2005.

Exploiting Target Enlargement And Dynamic Abstraction Within Mixed BDD

And SAT Invariant Checking. Electronic Notes in Theoretical Computer Science
119, 2 (2005), 33–49.

[5] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool For Checking

ANSI-C Programs. In TACAS (LNCS), Vol. 2988. 168–176.
[6] Lucas C. Cordeiro, Bernd Fischer, and João Marques-Silva. 2012. SMT-Based

Bounded Model Checking For Embedded ANSI-C Software. IEEE Transactions on
Software Engineering 38, 4 (2012), 957–974.

[7] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey,

Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, and

Vern Paxson. 2014. The Matter Of Heartbleed. In IMC. 475–488.
[8] Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro, Bernd

Fischer, and Denis A. Nicole. 2018. ESBMC 5.0: An Industrial-Strength C Model

Checker. In ASE. ACM, 888–891.

[9] Mikhail Y. R. Gadelha, Hussama I. Ismail, and Lucas C. Cordeiro. 2017. Handling

Loops In Bounded Model Checking Of C Programs Via K-induction. STTT 19, 1

(2017), 97–114.

[10] Steve Heath. 2003. Embedded Systems Design. Newnes, Oxford, United Kingdom.

430 pages.

[11] Dejan Jovanović and Bruno Dutertre. 2016. Property-directed k-induction. In
FMCAD. 85–92.

[12] Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and James Wor-

rell. 2011. Linear Completeness Thresholds For Bounded Model Checking. In

CAV (LNCS), Vol. 6806. 557–572.
[13] Florian Merz, Stephan Falke, and Carsten Sinz. 2012. LLBMC: Bounded Model

Checking Of C And C++ Programs Using A Compiler IR. In VSTTE (LNCS),
Vol. 7152. 146–161.

[14] Felipe R. Monteiro, Erickson H. da S. Alves, Isabela S. Silva, Hussama I. Ismail,

Lucas C. Cordeiro, and Eddie B. de Lima Filho. 2018. ESBMC-GPU A Context-

Bounded Model Checking Tool To Verify CUDA Programs. Science of Computer
Programming 152 (2018), 63 – 69.

[15] Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking Of

Concurrent Software. In TACAS (LNCS), Vol. 3440. 93–107.
[16] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety

Properties Using Induction And A SAT-Solver. In FMCAD. 108–125.

769

	Abstract
	1 Introduction
	2 The k-induction Algorithm
	3 Counterexample-guided k-induction Algorithm
	3.1 Running Example

	4 Experimental Evaluation
	4.1 Preliminary Results

	5 Related Work
	6 Conclusion
	References

