
ESBMC: Scalable and Precise Test Generation
based on the Floating-Point Theory

(Competition Contribution)

Mikhail R. Gadelha1, Rafael Menezes2 , Felipe R. Monteiro2 ,
Lucas C. Cordeiro3 ?, and Denis Nicole4

1 SIDIA Instituto de Ciência e Tecnologia, Manaus, Brazil
2 Federal University of Amazonas, Manaus, Brazil

3 University of Manchester, Manchester, UK
lucas.cordeiro@manchester.ac.uk

4 University of Southampton, Southampton, UK

Abstract. ESBMC is an SMT-based bounded model checker for real-
world C programs. Such programs often represent real numbers using
the floating-points, most commonly, the IEEE floating-point standard
(IEEE 754-2008). Thus, ESBMC now includes a new floating-point arith-
metic encoding layer in our SMT backend, that encodes floating-point
operations into bit-vector operations. In particular, ESBMC can use off-
the-shelf SMT solvers that offer support for bit-vectors only to encode
floating-point arithmetic.

Keywords: Automated Test Generation · Bounded Model Checking ·
Software Testing · Satisfiability Modulo Theories.

1 Test Generation Approach

ESBMC [3,7] is an SMT-based bounded model checker for the verification of
safety properties and assertions in both sequential and multi-threaded C pro-
grams. ESBMC primarily aims to help software developers by finding subtle
bugs in their code (e.g., array bounds violation, null-pointer dereference, arith-
metic overflow, and deadlock). It also implements k -induction [5,10] and can
be used to prove the absence of property violations, i.e., program correctness.
In Test-Comp’20 [1], ESBMC produces test cases using the falsification mode,
which is an iterative bounded model checking (BMC) approach that repeatedly
unwinds the program until it either finds a property violation or exhausts time
or memory limits. Intuitively, ESBMC aims to find a counterexample with up
to k loop unwindings. The algorithm relies on the symbolic execution engine to
increasingly unwind the loop after each iteration. ESBMC uses the falsification
mode because it is known that there exist property violations in all programs
in the Test-Comp, so there exists no need to prove correctness. From the coun-
terexample produced by ESBMC, we define the test specification required by
the competition using an external Python script.

? Jury member

http://orcid.org/0000-0002-6102-4343
http://orcid.org/0000-0001-9420-9056
http://orcid.org/0000-0002-6235-4272


2 M. R. Gadelha et al.

ESBMC runs with an improved SMT backend for test-case generation, which
includes a floating-point encoding layer that converts all floating-point opera-
tions into bit-vector operations (a process called bit-blasting) when encoding the
program into an SMT formula. Previous ESBMC versions [8] were only able to
encode and verify programs using a fixed-point representation for floating-points.
This particular encoding is a valid approximation since fixed-points are used in
a large number of applications in the embedded world; however, it restricted
ESBMC from verifying the broad set of programs that relied on processors that
implement floating-point arithmetic.

There exist various strategies to solve SMT formulae with floating-point
arithmetic. It is tempting to use a real arithmetic strategy to tackle these for-
mulae; however, the floating-point arithmetic is an approximation of the real
one and introduces a new set of values (e.g., NaNs). ESBMC follows the same
approach as CBMC [2] and 2LS [15], which also bit-blast all operations, includ-
ing floating-point operations, before checking satisfiability using SAT solvers.
The bit-blasting algorithm in ESBMC is based on the bit-blasting performed
by Z3, which is an improved version of the algorithms described by Muller et
al. [12]. A floating-point is encoded into SMT using a single bit-vector and fol-
lows the IEEE–754 [11] standard for the size of the exponent and significand.
For instance, a half-precision floating-point (16 bits) has 1 bit for the sign, 5
bits for the exponent and 11 bits for the significand (1 hidden bit) [11]. Thus,
the floating-point encoding layer in ESBMC performs the operations in the bit-
vectors representing the floating-points, e.g., the formula to check if a bit-vector
is a NaN checks if the exponent is all 1’s and if the significand is not zero.
The resulting SMT formulae are the translation of the floating-point arithmetic
digital circuits to SMT [12].

The improved SMT backend is an extension of our previous work on floating-
point arithmetic encoding [9]. Previously, we extended ESBMC to encode floating-
point arithmetic into SMT, however, we were restricted to SMT solvers that
supported the FP theory natively (i.e., Z3, MathSAT and CVC4) [9]. Now, the
floating-point encoding layer extends the FP theory support to all solvers sup-
ported by ESBMC, including Boolector [13] and Yices [4], which do not natively
support that FP theory. In Test-Comp’20, ESBMC uses Boolector 3.0.1 and
produces 470 confirmed test specifications. In particular, ESBMC achieved the
the highest score in the ReachSafety-Floats, a category focused on programs
with floating-point arithmetics, correctly verifying 30 out of the 32 test cases
and outperforming all other tools in this category. The results in this category
demonstrates the effectiveness of the floating-point bit-blasting: Boolector does
not support the FP theory natively and yet was able to reason about almost all
the test cases in the competition that involved floating-point arithmetic.

2 Strengths and Weaknesses

The falsification mode allows ESBMC to keep unwinding the program until a
property violation is found, or until it exhausts time or memory limits. Its BMC
approach, however, stops after it has found a property violation and prevents



Scalable and Precise Test Generation based on the Floating-Point Theory 3

the generation of tests specifications for multiple property violations or coverage
testing. This approach, however, is an advantage in the Cover-Error category
as finding one error is the primary goal.

Encoding programs using the SMT FP theory has several advantages over the
fixed-point approach. ESBMC can now accurately model C programs that use
the IEEE floating-point arithmetic [11]. In particular, ESBMC ships with models
for most of the current C11 standard functions. Furthermore, the floating-point
encoding layer in ESBMC extends the support for the SMT FP theory to solvers
that do not support it natively. ESBMC can verify programs with floating-point
arithmetic using all currently supported solvers – including Boolector and Yices,
which do not support the SMT FP theory.

In Test-Comp’20 results, 470 tests were confirmed while 13 tests were uncon-
firmed, where 11 were due to bugs in the script that generates the test specifica-
tion (e.g., non-deterministic unions or duplication of non-deterministic values)5,
1 was due to a bug in ESBMC that caused the tool to fail6, and 1 was due to unde-
fined behavior in the test case7. We chose Boolector for the competition because
it outperforms all other SMT solvers supported by ESBMC. In the ReachSafety-
Floats category, Boolector even outperforms all other SMT solvers that natively
support FP theory. We believe that Boolector employs more abstract and less ex-
pensive techniques (e.g., algebraic reduction rules and contextual simplification)
before bit-blasting SMT formulae into SAT.

The drawback of the floating-point encoding is that they are very complex;
it is not uncommon to see the SMT solvers struggling to support every corner
case [6,14]. The maintenance of our floating-point encoding layer is hard, and we
do not yet have proof that it is entirely correct, even though empirical evidence [9]
points in that direction and suggests that the approach is efficient in finding bugs
as shown by Test-Comp’20 results. The complex bit-vector formulae also prevent
high-level reasoning about the problem by the SMT solver, however, this is not a
significant issue for ESBMC as all high-level simplifications are performed before
encoding the program into SMT formulae.

3 Tool Setup and Configuration

In order to run our esbmc-wrapper.py script8, one must set the architecture
(i.e., 32 or 64-bit), the competition strategy (i.e., k -induction, falsification, or
incremental BMC), the property file path, and the benchmark path, as:

esbmc-wrapper.py [-a {32, 64}] [-p PROPERTY_FILE]

[-s {kinduction,falsi,incr,fixed}]

[BENCHMARK_PATH]

5 https://github.com/esbmc/esbmc/issues/142
6 https://github.com/esbmc/esbmc/issues/143
7 https://github.com/sosy-lab/sv-benchmarks/pull/1073
8 https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/master/2020/

esbmc-falsi.zip

https://github.com/esbmc/esbmc/issues/142
https://github.com/esbmc/esbmc/issues/143
https://github.com/sosy-lab/sv-benchmarks/pull/1073
https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/master/2020/esbmc-falsi.zip
https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/master/2020/esbmc-falsi.zip


4 M. R. Gadelha et al.

where -a sets the architecture, -p sets the property file path, and -s sets the
strategy (e.g., kinduction, falsi, incr, or fixed). In Test-Comp’20, ESBMC
uses falsi for falsification.

Internally, by choosing the falsification strategy, the following options are
set when executing ESBMC: --no-div-by-zero-check, disables the division
by zero check (required by Test-Comp); --force-malloc-success, sets that
all dynamic allocations succeed (a Test-Comp requirement); --floatbv, en-
ables floating-point SMT encoding; --falsification, enables the falsification
mode; --unlimited-k-steps, removes the upper limit of iteration steps in
the falsification algorithm; --witness-output, sets the witness output path;
--no-bounds-check and --no-pointer-check disable bounds check and pointer
safety checks, resp., since we are only interested in finding reachability bugs;
--k-step 5, sets the falsification increment to 5; --no-allign-check, disables
pointer alignment checks; and --no-slice, disables slicing of unnecessary in-
structions. The Benchexec tool info module is named esbmc.py and the bench-
mark definition file is esbmc-falsi.xml.

4 Software Project

The ESBMC source code is written in C++ and it is available for downloading at
GitHub9, which include self-contained binaries for ESBMC v6.1 64-bit. ESBMC
is publicly available under the terms of the Apache License 2.0. Instructions for
building ESBMC from the source code are given in the file BUILDING (including
the description of all dependencies). ESBMC is an international-joint project
with the SIDIA Instituto de Ciência e Tecnologia, Federal University of Ama-
zonas, University of Southampton, University of Manchester, and the University
of Stellenbosch.

References

1. Beyer, D.: Second competition on software testing: Test-comp 2020. In: Proc.
FASE. LNCS , Springer (2020)

2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Tools And Algorithms For The Construction And Analysis Of Systems. LNCS,
vol. 2988, pp. 168–176 (2004)

3. Cordeiro, L.C., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: International Conference on Software Engi-
neering. pp. 331–340 (2011)

4. Dutertre, B.: Yices 2.2. In: Computer-Aided Verification. LNCS, vol. 8559, pp.
737–744 (2014)

5. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003)

6. Erkk, L.: Bug in floating-point conversions. https://github.com/Z3Prover/z3/
issues/1564 (2018), [Online; accessed January-2020]

9 https://github.com/esbmc/esbmc

https://github.com/Z3Prover/z3/issues/1564
https://github.com/Z3Prover/z3/issues/1564
https://github.com/esbmc/esbmc


Scalable and Precise Test Generation based on the Floating-Point Theory 5

7. Gadelha, M.R., Monteiro, F., Cordeiro, L., Nicole, D.: ESBMC v6.0: Verifying C
programs using k-induction and invariant inference. In: Tools And Algorithms For
The Construction And Analysis Of Systems. LNCS, vol. 11429, pp. 209–213 (2019)

8. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: An industrial-strength C model checker. In: Automated Software
Engineering. pp. 888–891 (2018)

9. Gadelha, M.Y.R., Cordeiro, L.C., Nicole, D.A.: Encoding floating-point numbers
using the SMT theory in ESBMC: An empirical evaluation over the SV-COMP
benchmarks. In: Simpósio Brasileiro De Métodos Formais. LNCS, vol. 10623, pp.
91–106 (2017)

10. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. Software Tools for Technology Transfer
19(1), 97–114 (2017)

11. IEEE: IEEE Standard For Floating-Point Arithmetic (2008), IEEE 754-2008
12. Muller, J.M., Brisebarre, N., Dinechin, F., Jeannerod, C.P., Lefvre, V., Melquiond,

G., Revol, N., Stehl, D., Torres, S.: Handbook of Floating-Point Arithmetic.
Birkhuser Boston, 1st edn. (2010)

13. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal on
Satisfiability, Boolean Modeling and Computation 9, 53–58 (2014)

14. Noetzli, A.: Failing precondition when multiplying 4-bit significand/4-bit ex-
ponent floats. https://github.com/CVC4/CVC4/issues/2182 (2018), [Online; ac-
cessed January-2020]

15. Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.:
Incremental bounded model checking for embedded software (extended version).
Formal Aspects of Computing 29(5), 911–931 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://github.com/CVC4/CVC4/issues/2182
http://creativecommons.org/licenses/by/4.0/

	ESBMC: Scalable and Precise Test Generation based on the Floating-Point Theory

